APPLICATION OF DISCRETE SYSTEMS SIMULATION TO REDUCE WAITING TIME IN THE OUTPATIENT SERVICE OF A HOSPITAL IN THE CITY OF SÃO PAULO, BRAZIL

Alexandre Augusto Massote^(a), Domenico Caruso^(b), João Batista Gonçalves Sousa^(c)

^(a)Centro Universitário da FEI ^(b) Centro Universitário da FEI ^(c) Centro Universitário da FEI

^(a)massote@fei.edu.br^(b)domenico-caruso@hotmail.com^(c)jbg.sousa@terra.com.br

ABSTRACT

This paper aims to analyze failures in a service at the arrhythmology outpatient units, using as support the simulation of discrete systems, the sizing of an outpatient service unit in terms of the nursing staff required, the room occupation and the waiting time. In particular, the cardiology outpatient service in a hospital located in São Paulo, Brazil, is investigated. The simulation model developed showed consistent results and proved to be an excellent tool to support the decision-making and to enhance the quality of care.

Keywords: simulation, health management, decision support system

1. INTRODUCTION

Hospitals and outpatient services around the world are seeking ways to increase efficiency in outpatient care by reducing waiting time and its variability. The objective of this study was to evaluate the flaws in an answering service in the arrhythmology outpatient units and generate alternative scenarios that could provide improved customer service. For this purpose, we developed a discrete event simulation model which allowed the assessment of nursing staff requirements. the room occupation and the waiting time. The unit is composed of offices dedicated to treatment in the field of electrophysiology and rooms dedicated to tests, such as installation procedures Hölters, ABPM (Ambulatory Blood Pressure), ECG (Electrocardiogram), SAECG (High Resolution Electrocardiogram), Tilt-test (Test of Slope) and CETE (Transesophageal Cardiac Stimulation.)

The sector of arrhythmia occupies the 5th floor of a complex of buildings of a hospital in São Paulo. The total area occupied by the sector is 240 m² and attends an average of 106 patients per day in consultations with medical specialists in arrhythmology. Currently, the service has a waiting time for the patient which exceeds the legally acceptable 30 minutes. Additionally, the incidence of overtime of scheduled working hours for the nursing staff is high. The waiting room remains crowded over the day and it is not uncommon that the closing time has to be delayed by as much as two hours.

According to Jun (et al., 1999) and Dittus (et al., 1996), the simulation has been used extensively to plan health services. Katsaliaki and Mustafee (2009) conclude in their article that the simulation allows stakeholders to make appropriate decisions based on statistical parameters that represent the reality of the simulated system, providing the same experiment with different strategies for resource allocation. Quality improvement in decision making leads to better utilization of available resources, which improves the quality of health services provided to citizens. According to Brailsford (2005), the simulation has been studied in universities for 66 years and 46 are used in health care. The health system in the UK has used simulation models since 1962. From these early experiences, the work of simulation in health care has generated excellent results, supported clinical decision making, facilitated the planning, allocated resources for evaluating and redesigning processes.

Several studies have proven that the simulation of discrete systems is useful in improving care services for outpatients. Ashton et al. (2005) used simulation to identify problems in a call center "walk-in" and suggest improvements in the waiting room and triage processes. Stahl et al. (2004) used simulations to analyze alternative configurations of a staff of anesthesiologists to increase efficiency in performing surgery. Stafford and Aggarwal (1979) developed a model of discrete event simulation for outpatient care of a university clinic. The model was used to explore the effects of different levels of staff and the aggregation of two or more service units within the clinic. Chwen et al. (2003) reported that consumers are demanding more nowadays than ever before. In an intensely competitive world, the pressure, the expectations, and the need to perform more tasks in less time are increasing rapidly.

However, some studies also show the difficulty of simulation models implementation in health institutions. Watt (1977) and Wilson (1981) describe the factors that may be barriers to the implementation of simulation projects in hospitals: the culture of health institutions, where medical professionals and nursing are highly resistant to change; the high cost of simulation software and training of professionals specialized in this area; the low quality of existing data systems in hospital management; and the high cost of specialized consulting in this area. This factor takes the health institutions to join the universities participating in theoretical studies, which conflicts with the need for hospital administrators, who want a simple and rapid implementation. There is also the difficulty of generic models application in hospitals, since each institution sees its internal processes as totally different from other hospitals, generating the need to create a multitude of different models.

The research carried out by Wilson (1981) shows that from the 200 articles analyzed on simulation projects in health, only 16 were successful. The common characteristics of these articles were: at least one of the authors should be part of the hospital staff and have an interest in solving the problem, the problem must be of high priority for the institution, the funding for the project must be outside and there must be a detailed description of existing data for analysis. Fortunately, all these assumptions cited characterized the development of this study.

As in most health facilities in the country, the application of discrete simulation systems to improve hospital processes is new. Traditionally, empirical methods are used to quantify the nursing staff, and the dimensions and capacity of the reception and waiting room. These measures are determined based solely on experience and observation of similar services within the institution or elsewhere.

The simulation results are consistent with the perception of health professionals and proved to be an excellent tool to support the decision-making. The results provided important information for managerial decision making in relation to the sizing of staff and enhancing the quality of care.

The approach presented in this paper can also bring an important contribution to the design and management of the Brazilian health system, because these services receive a greater number of patients every day with increasing levels of demand, requiring improvements in efficiency and quality of care. Since Brazil is an emerging country, the resources available for investment in the area do not follow the increasing demand, which implies an absolute necessity to invest in the best way possible. Hospitals and outpatient services from around the world are seeking ways to increase efficiency in outpatient care, reducing waiting time and its variability. A simulation model can be a great advantage, providing an overview of the care process and allowing the adjustment of several variables, such as layout, staffing and patient flow.

2. MODEL DEVELOPMENT

Site visits were conducted to monitor the care process and measurement time for each procedure performed in the service. The frequency of patient arrival was obtained through the records of entry into the building's concierge and reception service. Two nurses accompanied these visits: the manager of the building where the service works and the nurse coordinator, who in addition to other areas, manages the work in the sector of arrhythmology.

2.1. Collected Observations and Information

Visits were made in locus to monitor the process of care and perform measurements of service time for each procedure performed in the service unit. Figure 1 shows the simplified layout of the simulated system.

Figure 1: Layout of the simulated system

2.1.1. Structural Information

The Arrhythmia Service is open Monday through Friday, from 7 am to 7 pm. Following are the features of the simulated system before the exams, which are the main focus of the study:

- Board of nursing staff: Two nursing technicians per shift of six hours.
- Reception Service: Capability to care for two patients at a time.
- Waiting Room: Capacity for 12 patients.

2.1.2. Flow of Patients and Time Collected

Figure 2 shows the flow of patients by type of examination performed in the field of arrhythmia, with the average time measured during visits to the sector.

Examination type

examination type

The collected data were statistically analyzed and the result is the probability distribution of the time variable in all types of test, following a uniform probability distribution.

Figure 3 shows the flow and the time for queries.

Consultations (Offices 1, 2 and 3)

Figure 3: Flow of patients and time for queries

2.1.3. Information about the demands

We analyzed the agenda of patients who used the services sector of arrhythmia during a month. The average daily attendance is 106 patients. We chose to stratify patients by type of care performed by creating percentages of the total number of daily visits.

2.1.4. Development of Simulation Model

From the information collected was used Promodel simulation software, version 7.0, to implement the model, considering the typical work and for generating the various scenarios analyzed.

At first, it was not allowed by the direction of the hospital to consider scenarios involving possible changes to the layout to improve flow of movement, as well as changes in the provisions of the various rooms and offices. Therefore, the only variable that could be modified in various scenarios was analyzed for the quantity of nursing staff accompanying examinations and consultations. Appendix A shows the developed model.

3. RESULTS

Table 1 shows the average utilization of the nursing resources in percentage according to the dimensioning of the nursing workforce by scenario.

Table 1. Nurses utilization												
Sconario	Number of	Quantity	Utilization									
Scenario	Nurses	Utilized	%									
1	2	96	92.06									
2	3	132	87.99									
3	4	132	77.68									

Table 1: Nurses utilization

Table 2 presents the number of patients who were treated within the prescribed period between 7 am and 7 pm. One can assess the demand is met within the service in the simulations involving three four nursing technicians per shift.

Table 2: Demand Achievement

Scenario	Number of Nurses	Demand	Patients Treated
1	2	106	78
2	3	106	106
3	4	106	106

Table 3 presents information on the occupation of the waiting room, according to the design of the framework for nursing. The waiting room was kept fully occupied in 84.04% of the time, with two nursing technicians. As shown in table 4, the average waiting time of patients enrolled in the waiting room was 28.41 minutes for the same situation. This reality is not compatible with the quality of care being provided by the service in question. According to the laws of the country, the maximum waiting time for care in a service is 30 minutes. In the configuration shown, the highest average waiting time is very close to the limit accepted. Certainly, there are patients waiting longer than prescribed by law.

In the configuration that uses three practical nurses per shift, the waiting room remains full for 38.7% of the time, but does not cause failures in patient care. That means the maximum waiting is 31.11 minutes. The configuration with four nursing technicians also presents acceptable values of the waiting room occupancy and maximum average for care.

Table 3: Waiting room occupation

Saamamia	Number of	Fully	Partially
Scenario	narioNumber of NursesOc122334	Occupied (%)	Occupied (%)
1	2	84.04	13.71
2	3	38.07	56.50
3	4	0.00	91.06

Table 4. I	Table 4. Average waiting time per patient								
Scopario	Number of	Average Waiting							
Scenario	Nurses	Time (min)							
1	2	28.41							
2	3	11.31							
3	4	3.03							

Table 4: Average waiting time per patient

The simulation model was developed with a specific objective of evaluating the staff necessary to meet the demand for an outpatient service. It should be noted that the need for new employees can be met by idle professionals from other sectors, or by improving the efficiency of service processes. Currently, the overtime necessary to meet the demand of the service accounts for 12% of the cost of hiring, wages, and benefits of the employees. The annual cost of a nursing technician comes to \$48,800.00.

Defining the two most appropriate scenarios, and taking into account the premise that the design of two practical nurses per shift does not meet the needs of service demand, the manager responsible for the sector may make the decision to hire new staff or not, with reference parameters that allow a decision about quality with high reliability and within the policies established by the institution and the costs involved in hiring new workers. Appendix B shows a typical Promodel report.

4. CONCLUSIONS

Brazil has today a strong demand for health services. According to Ceres et al. (2008), the private insurance market is significant in the Brazilian health system. In December 2006, involving 44.7 million bonds of beneficiaries, of whom 82.7% to health care plans and 173% exclusive dental plans, 2,070 operating companies, more than 20,000 plans and thousands of service providers. The population using health services is becoming more demanding about quality.

The simulation showed results consistent with the perception of industry professionals. It has been shown by several researchers that the simulation can clearly represent a real situation, with details that support a logical decision. In this particular case, the largest benchmark was used in the waiting time simulation, which was very similar to the real time. This article presents a model that provides important management information for decision making in relation to the scale of staff and enhancing the quality of care. In a health service, the great need to reduce costs and increase process efficiency creates an environment conducive to the use of simulation models of discrete systems.

APPENDIX A - THE DEVELOPED MODEL

Locations			
Nome	Cap	Unidade	Estatísticas
Recepção	inf	1	Série de Tempo
Sala_de_espera	12	1	Série de Tempo
Tilt_teste	1	1	Série de Tempo
Mapa	1	1	Série de Tempo
Posto_de_enfer.	1	1	Série de Tempo
Holter	1	1	<u>S</u> érie de Tempo
ECG_AR	1	1	Série de Tempo
Consultório_2	1	1	Série de Tempo
Consultório_1	1	1	Série de Tempo
Consultório_3	1	1	Série de Tempo
CETE	1	1	Série de Tempo

Nome	Veloci	dade (mp	m)	Esta	tísti	cas
Paciente_exar	ne	50		Séri	e de	Tempo
Paciente_tilt		50		Série	e de	Tempo
Paciente_map	a	50		Séri	e de	Tempo
paciente_holte	er	50		Séri	e de	Tempo
Paciente_ECC	J_AR	50		Séri	e de	Tempo
Paciente_cete		50		Séri	e de	Tempo
Paciente_cons	1	50		Série	e de	Tempo
Paciente_cons	2	50		Séri	e de	Tempo
Paciente_cons	3	50		Série	e de	Tempo
Path network	s					
Nome Tipo	•	Г/S	De	Para	BI	String
Red1 Não-Pa	ss Velo	c.& Dist.	R 1	R2	Bi	17.76

Recursos						
Nome	Unid	Esta	tística	s	Pe	squisar
Enfermeira	4	Por	Unidad	le	Mais	Próx./Velha
Caminho			Mov	imer	ntação)
Red1		Vazio:	50 mp	m C	Cheio:	50 mpm
D						
Process						
Operation Entide de		Teel		0		~
Entidade	T	Local	~ -	Op	eraça	0
Paciente_ex	ame i	kecepç	ao	wa	n 0.5	
Rote DI Soído	De	atina	р		Táo	ioo do Mor
1 Deciente	De	Solo	A or	egra	first	
1 Factenite	_exame	Sala_	ue_est	era	mst	L
Operation Entide de		Teel		0		~ ~
Entidade		Local		Ū	peraç	ao
Paciente_ex	ame S	ala_de	_esper	a		
Rote	D		ъ	~~~~	Тź	too do More
1 Designate	D(4:14 T:14	esuno	0.020	gra	LO	
I Paciente_		_teste	0.030	000 1	L	move with
D		. r	0.04	0000		Enfermeira
Paciente_1	napa 1	мара	0.24	0000		move with
D	1. 7	T 1.	0.050			Enfermeira
Paciente_I	nolter I	Holter	0.250	0000		move with
	- ~ ~ .					Enfermeira
Paciente_I	ECG_A	R ECC	j_AR	0.19)	move with
						Enfermeira
Paciente_	cete C	ETE	0.02	0000		move with
						Enfermeira
Paciente_	cons1 C	Consult	orio_1	0.09)	move with
						Enfermeira
Paciente_	cons2 C	Consult	ório_2	0.09)	move with
						Enfermeira
Paciente_	cons3 C	Consult	orio_3	0.09)	move with
						Enfermeira
Operation						

Entidade	Local	Op	oeraçã	ão
Paciente_tilt	Tilt_teste	wa	it u(6	0,5)
		Free	Enfer	meira
Rote				
Bl Saída	Destino	R	egra	Lógica de
Mov			0	U
1 Paciente_tilt	EXIT	first	1	
Operation				
Entidade	Local	Op	oeraçã	ão
Paciente mapa	Mapa	wait	t u(15	,5)
- 1	1	Free E	Enferr	neira
Rote				
Bl Saída	Destino	Regra	Lóg	ica de Mov
1 Paciente_mapa	a EXIT	first 1		
Operation				
Entidade	Local	Op	oeraçã	ão
paciente_holter	Holter	wai	t u(15	5,5)
•		Free	Enfer	meira
Rote				
Bl Saída	Destino	Regra	Lóg	ica de Mov
1 paciente_holte	er EXIT	first 1	U	

Operation			
Entidade	Local	Ор	eração
Paciente_ECG_AR	ECG_AR	wai	t u(15,5)
		Free E	nfermeira
Rote			
Bl Saída De	stino	Regra	Lógica de Mov
1 Paciente ECG A	AR EXIT	first 1	C
Operation			
Entidade	Local	One	racão
Paciente cete	CETE	wai	t 15
I defente_cete	CLIL	Eree En	fermeira
Doto			lemena
Nuc DI Saída I	Doctino	Dogra	Lógico do Mov
Di Salua I		first 1	Logica de Miov
1 Paciente_cete	EXII	first 1	
Operation			
Entidade	Local	Оре	eração
Paciente_cons1 Co	nsultorio_1	wait	10
		Free Er	nfermeira
		wai	t 15
		get Enfe	ermeira
		wait	10
		Free En	fermeira
Rote		T TOO EM	Ioimonia
RUU RI Saída I	Doctino	Dogra	Lógico do Mov
1 Designts song1		finat 1	Logica de Mov
1 Paciente_cons1	EAH	IIISt I	
Operation Entidade	Local	On	ração
Paciente cons? Co	nsultório (wa	it 10
r defente_consz cc	insuitorio_2	Eroo I	Informaira
		Tiee I	
		wal	t 15 £
		get En	
		wai	
— .		Free En	fermeira
Rote		-	- /
BlSaídaI1Paciente_cons2	Destino EXIT	Regra first 1	Lógica de Mov
0			
Operation	. .	0	~
Entidade	Local	, Ope	eraçao
Paciente_cons3 Co	onsultorio	5 wa	it 10
		Free	Enfermeira
		wa	it 15
		get E	nfermeira
		wa	it 10
		Free I	Enfermeira
Rote			
Bl Saída I	Destino	Regra	Lógica de Mov
1 Paciente cons3	EXIT	first 1	8
	-		
Chegadas			
Entidade I	Local One	ahehitne	Primeira Voz
Deciente avomo D	Locancão	1	
Ocomônaias Est	niiônaia	I Í áctas	
104 Free		Logica	
106 U((3,1)		

APPENDIX B – PROMODEL REPORT

2 1 (j)			×.	- §	🤌 Va	es (u	ndefined view?	•	00	١								
General Res	ort (Exe	cucão Norm	al - Reo.	1)	- 1													
General Lo	ations	Location St	stes Mult	i Locafi	n States Sinj	je Reo	ources Res	iource Stat	tes No	de Entries	Faled	Azivals Enti	y Activity	Entity States				
Name		Schedu	eled Tim	e (HR)	apacity 1	iotal Entri	ies Avg Tir	ne Per Er	vtry (MIN	Avg C	ionients	Maxinum Co	ntents Cur	rent Contents	X Utiliz	ation		
Recepção				9,95 9	99999,00	106	00		0,5]	0,09		1,00	0,00		0,00		
Sala de exp	ara			9,95	12,00	105	.00		22,6	3	4,03		8,00	0,00		33,56		
lift teste				3,35	1,00	1	00		61,5	j 1	0,10		1,00	0,00		10,31		
Popa Popa de en	emaner			3,30	1.00	13	00		10,0	1	0,45		0.00	0,00		+3,30		
Holter				9,95	1,00	23	00		14,6		0,71		1,00	0,00		70,95		
EDG AR				9,95	1,00	30	00		14,6	2	0,73		1,00	0,00		73,45		
Consultório 2	2			9,95	1,00	10	00		38,0	3	0,64		1,00	0,00		63,68		
Consultario				9,95	1,00	8	00		36,12	2	0,48		1,00	0,00		48,39		
CETE				3,30	1.00	1	00		37,0. 15.0	1	10,01		1.00	0,00		2.51		
CE IL			_		1,00		. Dec 11		13,0	,			1,00	0,00		2,01		
				JOSIUT.MC	n (cxeonè	au NUIIIIa	i - nep. ij				_							
Name		Schedu	aled Tim	e (HR)	COperation	% Setu	p Xide :	t Waitin	3 % Blo	cked X	Down							
Tilt teste				9,95	10,31	0,0	69,69 0	0,0	0	0,00	0,00							
Мара				9,95	49,3	8 0,0	0 50,62	0,0	0	0,00	0,00							
Posto de en	fernager	1		9,95	0,00	0,0	0 100,00	0,0	0	0,00	0,00							
Hoter				9,95	70,9	i 0,0	0 23,05	0,0	0	0,00	0,00							
EUG AH	1			3,30	73,43		0 25,35	0,0	0	0,00	0.00							
Consultaio.				9.95	10,00 10,21	1 0,0	0 30,32	15	0	0,00	0,00							
Consultatio	3			9.95	46.8	0.0	0 49.33	37	8	0.00	0.00							
CETE				9,95	2,51	0,0	0 97,49	0,0	O	0,00	0,00							
								odelo1.M	IOD (Exe	cução N	ormal - F	Rep. 1)						
Name	Unit	s Schedu	led Tin	e (HR) 🕨	unber Tim	es Used	Avg Time P	er Usage	(HIN)	Avg Time	e Travel	To Use (MIN)	Avg Time	Travel To Pa	k (MIN)	% Blocks	ed In Travel	% Utilizati
Enferneira 1	1.0	0		9,95		35.00			13.32			0.42			0.35		0.00	80.
Enferneira	1,0	0		9,95		34,00			12,59			0,40			0,36		0,00	73,
Enferneira 3	1,0	0		9,95		34,00			13,58			0,42			0,34		0,00	73
Enferneira.4	1,0	0		9,95		29,00			15,26			0,47			0,36		0,00	76,
Enferneira	4,0	0		39,81		132,00			13,63	_		0,43			0,35		0,00	11,
			model	01.MOD (1	xecução N	lonnal - R	ep. 1)											
Name	Sch	eduled Tim	e (HR)	≵ in Use	2 Travel	To Use	% Travel T	Park 3	t Idle 💈	Down								
Enlemeira 1			9,95	78,05		2,45		2,47	13,29	3,68								
Enlemeia.2			9,95	71,63		2,28		2,46	20,06	3,52								
Enfermeira 3			9,95	77,3		2,37		2,33	14,12	3,85								
Enterneira.4			9,95	74,10		2,29		2,19	17,73	3,68								
Enlemena			39,81	15,3		2,35		2,36	16,30	3,68								
							B	odelo1.M	OD (Exe	cução No	ormal - R	lep. 1)						
Name		Total Exits	Curren	nt Qiy In S	ystem Av	g Tine In	System (MI)	() Avg	Tine In H	love Log	jic (HIN)	Avg Tine \	/aiting (MIN	Avg Time I	n Operaló	on (MIN)	Avg Time B	liocked (Mil
Paciente es	ane	0,00			0,00		0,	00			0,00)	0,0)		0,00		0,
Paciente tilt		1,00			0,00		64,	00			1,94		0,0	1		62,06		0)
Paciente na	ра	19,00			0,00		31,	43			2,37		0,0	1		16,02		13,
paciente ho	ter	29,00			0,00		31,	13			2,05	9	0,0]		15,11		13,
Paciente EC	15 AH	30,00			0.00		56,	5V 41			2,05	1	0,0	1		15,12		39;
Paciente ce	15 m1	1,00			0.00		16/	*1 20			0,91		1.1	1		10,00		5
Paciente co	m2	10,00			0.00		42,	15			1.20	,	10	1		35.40		20
Pariate co		0.00			0.00		57	20			1,21		3,0	5		25,50		100

REFERENCES

- Albuquerque, C., et al., 2008. A situação atual do mercado da saúde suplementar no Brasil e apontamentos para o future; *Ciências e Saúde Coletiva*, 13(5), Brasil.
- Ashton, R., Hague, L., Brandreth., M., Worthington, D., Cropper, S., 2005. A simulation-based study of a NHS walk-in centre. *Journal of Operational Research Society*, 56, 153–161.
- Dittus, R.S., Klein, R.W., Debrota, D.J., Dame, M.A.,. Fitzgerald, J.F., 1996. "Medical resident work schedules: design and evaluation by simulation modelling". *Management Science*, 1996, 42(6), 891-906.
- Joint Comission Resources, Gerenciando o Fluxo de pacientes – Estratégias e Soluções para Lidar com a Superlotação Hospitalar; *Editora Bookman*, 1ª Edição, Brasil.
- Jun J., Jacobson, S., Swisher, J., 1999. Application of discrete-event simulation in health care clinics: a survey. *Journal of Operational Research Society*, 50, 109–123.

Katsaliaki, K., Mustafee, N., 2010. Improving decision making in healthcare services through the use of existing simulation modelling tools and new technologie. *Transforming Government. People*, *Process and Policy*, 4,(2), 158-171.

Nerenz et al, 2011. A simulation model approach to analysis of the business case for eliminating health

care disparities. *BMC Medical Research Methodology*, 11-31.

- Robinson, S., 2005. Discrete-event simulation: from the pioneers to the present, what next?". *Journal of the Operational Research Society*, 56,(6), pp. 619-29.
- Rohleder, T.R., Bischak, D.P., Baskin, L.B., 2007. Modeling Patient Services Centers with Simulation and System Dynamics. *Health Care Manage Science*, 10, 1–12.
- Ruquet, M.E., 2000. Simulation Modeling Improves Service. National Underwriter. Life & Health, 104-37.
- Sheu, C., Mchaney, R., Babbar, S., 2003. Service Process Design Flexibility and Customer Waiting Time. International Journal of Operations & Production Management, 23, 7-8, Abi/Inform Global, pg. 901.
- Smith, D.J., 1994. Computer Simulation Applications in Service Operations: A Case Study From the Leisure Industry. *The Service Industries Journal*, 14-3, Abi Inform Global, 395.
- Stafford E.F.Jr, Aggarwal, S.C., 1979. Managerial analysis and decision-making in outpatient health clinics. *Journal of Operational Research Society*, 30, 905–915.
- Stahl, J.E., Rattner, D., Wiklund, R., Lester, J., Beinfeld, M., Gazelle, G.S., 2004. Reorganizing the system of care surrounding laparoscopic surgery a cost-effectiveness analysis using discrete-event simulation. *Medicine Decision Making.*, 24, 461–471.
- Watt, K, 1977. Why won't anyone believe us? *Simulation*, 28, 1-3.
- Wilson, JCT, 1981. Implementation of computersimulation projects in healthcare. *Journal of Operational Research Society*, 32: 825-832.

AUTHORS BIOGRAPHY

Massote, A.A.: Graduate in Mechanical Engineering by Centro Universitário da FEI (1979), Master in Industrial Engineering by COPPE/UFRJ (1991) and Ph.d. in Industrial Engineering by the Polytechnic School of the University of São Paulo (2001). Has experience in operational research, economic viability and production control. Research efforts are focused on the logistics, supply chain management and simulation. Currently he teaches simulation undergraduate degree in Industrial Engineering and master's program in Industrial Engineering, is also Head of Industrial Engineering Department of Centro Universitário da FEI, São Bernardo do Campo, Brasil