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ABSTRACT 
We propose a three level cognitive architecture for the 
simulation of cognitive phenomena. This architecture is 
based on Stanovich’s tripartite framework (2010), a 
unified model of cognition, which provides an 
explanation of how deliberative (characterized by 
sequentiality) and adaptive (characterized by reactivity) 
human behaviour emerges from the interaction of three 
distinct cognitive levels (autonomous/reactive, 
algorithmic/cognitive control, and reflective). In 
previous work (Larue et al, 2012) we focused on the 
interaction of algorithmic and reactive level on a task 
evaluating cognitive control. In this paper, we focus on 
the interaction between reflective and algorithmic level. 
More precisely, thanks to a Wisconsin card Sorting 
task, a task that evaluates cognitive flexibility (the 
ability to change strategies), we study how cognitive 
decoupling (or inner simulation) supports the 
deliberative behaviour and hypothesis testing.  

 
Keywords: Wisconsin Card sorting task, cognitive 
simulations, cognitive architecture, dual process 
theories 

 
1. INTRODUCTION 
Many cognitive architectures are designed with the 
intent of reproducing the human cognitive architecture, 
the human mind, either by replicating known fine-
grained structures of the brain (Eliasmith, 2005) or by 
building systems with capacities that are functionally 
equivalent to those of humans. Designers of such 
architecture all face what might be called “the duality 
challenge.” Evidence from many fields in cognitive 
psychology (psychology of reasoning, moral 
psychology, social psychology, etc.; see Evans 2008 for 
a review) and from cognitive neuroscience (see e.g., 
Goel, 2009) suggests that evolution may have built 
functionally incompatible (Sherry & Schacter, 1987) 
features into the human mind. On the one hand the mind 
is dynamical and reactive, simultaneously responding to 
many features in the environment in a seamless 

dynamical agent environment loop, while, on the other 
hand, it is sequential and rule following, applying 
explicitly learned rules one by one to plan its long-term 
behaviour or solve other complex problems. 
One important source of evidence that helped create and 
sustain the duality challenge (at least in its 
contemporary version) is to be found in the various tests 
used by cognitive psychologists and neuropsychologists 
to assess cognitive performance: the Stroop task 
(attention), the Wisconsin card sorting test (WCST) 
(cognitive flexibility), the Wason selection task (logical 
reasoning), the Iowa Gambling task (decision making), 
and others. One of the early proposals was Evans’ 
(1984) attempt to explain the bias observed in the 
Wason selection task (a task frequently used in the 
psychology of reasoning) by positing a competition 
between opposed heuristic (fast and automatic) and 
analytic (slow) processes. Explanations of the Stroop 
effect (Stroop, 1935) likewise often posit competing 
automatic processes, where attention, an opposed 
voluntary process, has to favor the less automatic of the 
two competing automatic processes. Similarly, many 
explanations of the perseverative errors in the 
Wisconsin Card Sorting Test rest on interactions 
between automatic and attentive processes. To address 
the duality challenge, the current trend in cognitive 
science and neuroscience is to posit dual system 
(Kahneman, 2011) or dual-process (Evans, 2008; 
Stanovich, 2010; Stanovich, 2011) theories, a “two-
minds mind” (Frankish & Evans 2009), often called 
“System 1” and “System 2,” where processes with 
features taken from a list of duals (implicit vs. explicit, 
automatic vs. voluntary, etc.) compete or collaborate to 
explain observed human behaviour. Designers of 
cognitive architectures in general have met the duality 
challenge by building hybrid architectures, interfacing 
dynamical and parallel systems such as neural networks 
with sequential and rule following systems, such as 
production systems. Dual-process theories (Evans, 
2006; Sloman, 1996; Kahneman, 2011), however, have 
attracted much criticism in the literature (e.g., Keren & 
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Schul, 2009) where they are (rightly) said to be 
oversimplifications. One pressing problem is to account 
for the interaction between the opposing processes: 
how, for instance, can a voluntary process interrupt an 
automatic one; or again how can the output of a 
domain-specific process affect domain-general decision 
making. Call this the “interface problem” (of current-
trend solutions to the duality challenge). Answers to the 
interface problem range from mere hand-waving 
(simply declaring that processes (somehow) interact) to 
nihilism (simply declaring that one set of processes do 
not exists – e.g., the mind is all (massively) modular) to 
despair (Fodor, 2000). Designers of cognitive 
architectures in general have dealt with the interface 
problem by converting the cognitive dichotomy into a 
paradigm (connectionist-symbolic) dichotomy (see for 
instance CLARION (Connectionist Learning with 
Adaptive Rule Induction ON line, Sun, 2004). 
A few philosophers (e.g., Carruthers, 2006), computer 
scientists (e.g. Sloman & Chrisley, 2005) and 
psychologists, however, have addressed the interface 
problem directly, attempting to provide positive 
accounts of the means of interaction between mind’s 
two minds. One such attempt is Stanovich’s Tripartite 
Framework, which, paradoxically, begins by positing a 
three-minds mind: an Autonomous Mind, an 
Algorithmic Mind and a Reflective Mind.  We use this 
model as the basis for the design of our architecture. 
Our aim is to motivate the resulting architecture as a 
simulation tool. In previous work, we illustrated and 
validated the performance of the system on the two 
lower levels (autonomous and algorithmic minds), 
thereby demonstrating the adaptive behaviour of our 
system, by means of two variants of the Stroop task 
(classical and semantic) (Larue et al., 2012). In this 
paper, we focus on the interaction between the 
reflective mind and the algorithmic mind of the system. 
To do so, we added to our architecture a function that 
has been deemed, in Stanovich’s tripartite framework, a 
key aspect in the production of deliberative behaviour: 
cognitive decoupling.  We use a Wisconsin card sorting, 
a task which requires cognitive decoupling and 
cognitive flexibility to be performed, as a way to 
illustrate the system’s performance.  
 
2. RELATED WORK 

 
2.1.  Stanovich’s tripartite model 

 
2.1.1. Autonomous, algorithmic and reflective 

minds 
Our cognitive architecture is based on on Stanovich’s 
tripartite framework (Stanovich, 2010). Letters in this 
section refers to letters on Figure 1. Stanovich’s 
tripartite model is a unified model of cognition that 
gives an account of how automatic (implicit) processes 
and explicit processes (control - attention and executive 
functions and more abstract planning and reasoning 
functions) are able to coexist. Stanovich’s tripartite 
framework belongs to the “dual-process theories” we 

previously described System 1 (called “Autonomous 
Mind” in Stanovich’s tripartite framework), is the locus 
of fast and automatic reasoning where instinctive 
behaviour, over-learned process, domain-specific 
knowledge, emotional regulation and implicit learning 
are found. System 2 is the locus of abstract and 
hypothetical reasoning. The division of human 
cognition into three sets of processes, instead of the 
traditional two of dual-process theories, provides a 
better account of individual cognitive differences. 
System 2 in Stanovich’s tripartite framework is divided 
in two classes of processes, respectively called the 
“Algorithmic Mind,” responsible for cognitive control, 
and the “Reflective Mind,” responsible for deliberative 
processes. Owing to this subdivision, the framework 
can capture the distinction between on the one hand 
cognitive ability and fluid intelligence achieved by the 
algorithmic mind, and on the other hand thinking 
dispositions and critical thinking skills achieved by the 
Reflective mind.  

The Algorithmic mind sustains three distinct 
processes: (1) override of Autonomous Mind processes 
(A), (2) cognitive decoupling (see section 2.1.2 for a 
complete description) (C), and (3) serial associative 
cognition.  

 Algorithmic Mind is linked to cognitive functions 
such us cognitive control and working memory and has 
access to information from the Autonomous Mind via 
two sets of pre-attentive processes (G) (1) perceptual 
processes and (2) beliefs and memory retrieval 
processes. Operations supported by the Reflective Mind 
define the subject’s cognitive style. The Reflective 
Mind initiates: the override of Autonomous Mind (B) 
processes by the Algorithmic Mind and the cognitive 
decoupling operation (D) (the cognitive decoupling 
capacity is sustained by the Algorithmic Mind). The 
Reflective mind can also act upon the Algorithmic mind 
by interrupting (F) serial cognition to send a new action 
plan for execution or start cognitive decoupling. 

 
2.1.2. Cognitive decoupling 
Cognitive decoupling is a key mechanism that supports 
human rationality. Individual differences in the 
operation of this mechanism lead to differences in 
rational thinking (Stanovich 2010). 

Decoupling has been largely studied in the dual 
process literature. It has been referred to as decoupling, 
cognitive simulation (Stanovich 2010) or hypothetical 
thinking (Evans 2008).  It consists in the creation of 
temporary models (D) of the world upon which 
alternative scenarios can be experimented. Nichols and 
Stich (2000) dubs it “possible words box”, a separate 
box in which simulation are carried out. The 
particularity of these temporary models is to be 
independent of the current mental representation of the 
world (primary representation). This prevents the real 
world representation to be confused with imaginary 
situations (secondary representation), since their 
manipulation doesn’t affect the current representation of 
the world.  
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While the Algorithmic mind carries out cognitive 
decoupling, it has a hard time performing other 
processes. Decoupling is a cognitively expensive 
operation, (its cognitive load is higher than that of serial 
associative cognition) therefore it is not systematically 
performed, and when performed, it can be carried out 
incompletely. As a result, suboptimal responses that are 
cognitively easier solution provided by serial 
association (i.e. simple and incomplete models that 
appear appropriate for the situation) are often applied. 
Serial associative cognition (E) supports the 
implementation of these simple models.  

 

 
 

Figure: Stanovich’s tripartite framework 
 

2.2. Wisconsin Card Sorting Task 
The Wisconsin card sorting test (WCST) (Grant & 
Berg, 1948) is a task widely used to test executive 
functioning, especially cognitive flexibility and abstract 
reasoning. The subject is shown a set of target cards. 
The figures on the cards vary in shape, number and 
color. Stimulus cards are shown to the subject, one by 
one, and the subject is asked to match them to one of 
the target cards. The subject is not told what the sorting 
rule is; he has to discover it. However, he receives 
negative feedback when his matching is wrong. After a 
number of successful matching, the rule changes 
without the subject being warned. After discovering the 
new rule, subjects experience difficulties inhibiting the 
previous rule: they cannot shift attention from one 
complex visual stimulus to another (set shifting). The 
perseverative error is the tendency to use the previous 
rule after a switch (Nyhus & Barcelo, 2009). 
Perseverative errors are more common in patients with 
lesions to the frontal lobe and increase with the age of 
subjects. The selection of the response is achieved 
through two mechanisms: the attentional set shift and 
the reversal shift, which are located in two distinct 
neuroanatomical structures of the PFC (Nagahama et 
al., 2005). The reversal shift, achieved through the 
posterior region of the PFC, is in charge of the update 

of associations between stimulus and response modules. 
The attentional set shift, achieved through the 
rostrodorsal PFC, is a higher level cognitive mechanism 
allowing adoption of the new rule by cognitive control 
(Anterior Cingular Cortex). 

 
2.3. Computer simulations of the WCST 
Computer simulations of this task have been achieved, 
mainly with connectionist approaches (Deahaene & 
Changeux, 1991; Kaplan et al., 2006), but also with 
symbolic and hybrid approaches (Kimberg & Farrah, 
1993).  

Dehaene and Changeux’s simulation focuses on 
the functional aspect of the task by including in their 
neural network model the three cognitive components 
they deem critical to the accomplishment of the task: 
the ability to change rules when negative reward occurs, 
the capacity to memorize previously tested rules and the 
possibility of rejecting rules because of a priori 
reasoning. These three components are achieved by 
means of a hierarchical structure: a sensorimotor loop, a 
higher level assembly of rule-coding cluster codes – the 
current rule – shifted in case of negative reward 
(episodic memory of the system), an endogenous auto-
evaluation loop allowing the internal testing of rule. The 
structure is compatible with the organization and 
specialization of cortical areas.  

To simulate the distinction between the hypothesis 
generator and action, Kaplan et al. (2006) connected 
two distinct subsystems (respectively a hamming block 
and a Hopfield network), which allowed them to study 
perseverance and distractibility and reproduce lesions in 
the prefrontal cortex. The Hopfield network acts as the 
system’s Working Memory, and the hamming block as 
its hypothesis generator. 

Kimberg and Farrah (1993) explicitly represent  
the sorting behaviour of their system, to study the 
involvement of Working memory in the task, in an 
ACT-R architecture (Anderson & Lebiere, 1998). ACT-
R is a production system and as such, uses a set of 
productions (its procedural knowledge and a working 
memory representation). The Working memory 
associations are weakened in order to model the effects 
of Frontal Lobe Damage in humans. 

Being an hybrid approach, our architecture 
presents some similarities with these various 
architectures, if only because they all use a model of the 
human brain in the performance of the task. The 
endogenous auto-evaluation loop of Dehaene and 
Changeux’s architecture, allowing the internal testing of 
rule, can be compared functionally to our decoupling 
ability. Their hierarchical structure can be compared to 
that one of our own architecture; however in our 
system, behaviour emerges through the interaction of 
the different levels, rather than being strictly controlled 
by a higher level structure. We share aspects with the 
different connectionist approaches since memory of the 
previous correct and incorrect rules is kept by the 
degree of activation of knowledge (at the reactive level) 
and objectives (at the reflective level). We share aspects 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2012
978-88-97999-13-3; Backfrieder, Bruzzone, Longo, Novak, Rosen, Eds. 48



with the symbolic approaches since knowledge and 
objectives in our system are represented by symbols. 
All of the previous simulations study the involvement 
of one specific cognitive component in the performance 
of the task. In this paper, however, we chose the WCST 
as a way of studying the interaction between the 
components (or minds) in Stanovich’s Tripartite 
Framework, this task being known to tap reflective and 
algorithmic processes (inhibition and decoupling at the 
rule discovery stage). 
 
3. OUR PROPOSAL 
 
3.1. Architecture 
We implemented our cognitive architecture in the multi-
agent system (MAS) platform Madkit. The MAS is 
organized into groups (In Madkit, a “group” is a set of 
agents that share common characteristics), each 
corresponding to a cognitive level in our architecture. 
As there are three levels in our cognitive architecture 
(reactive, algorithmic and reflective), the MAS is 
composed of three groups. To keep matters simple, 
groups are given the name of the level they correspond 
to. Each agent has one or more roles (in Madkit, a 
“role” is an abstract representation of an agent’s 
functionality) and belongs to one or more groups. All 
agents work in parallel, sending messages to each other. 
Each message received by an agent will activate the 
agent a little; the activation of the agent is thus a 
function of the number of messages it receives. The 
activation of an agent determines the number of 
messages it sends by unit of time. 

 
 

 
 
 

Figure 2 : System’s architecture 
 

3.1.1. Reactive level 
Corresponding to Stanovich’s Autonomous Mind, the 
Reactive level contains agents assigned with one of 
three roles:  the “sensor” role (C - Letters in the section 
refer to letters in Figure 2), the “effector” role (D) and 
“knowledge” role (A), which we thus respectively 
name: Sensor Agents, Effector Agents and  Knowledge 

Agents. Knowledge Agents form a network isomorphic 
to the conceptual map the system is initialized with. 
Each Knowledge Agent receives, as an additional role, a 
word from the conceptual map (e.g., “Red”) and is 
linked to other Knowledge Agents according to links 
between the words in the map (e.g., the Knowledge 
Agent “Red’ will be linked to the Knowledge Agent 
“Tomato”, and so on). The links between Knowledge 
Agents are weighted according to the semantic distance 
between them in the conceptual map (e.g. the link 
between “Red” and “Tomato” will receive a higher 
weight than that between “Red” and “Meat”). The 
network of knowledge Agents makes up the system’s 
declarative knowledge (semantic memory). In the 
experiments reported in this paper, the network of 
Knowledge Agents MAS was initialized with the 
common sense knowledge database Conceptnet 
(Havasi, Speer & Alonso, 2007). The number of 
messages exchanged between the agents, and therefore 
their activation, is at first determined by the distance 
between them in the conceptual map (it will also be 
determined by activation signals from higher levels – 
see below). Activation thus spreads through the network 
of Knowledge Agents (a process similar to semantic 
memories; Anderson, 1983). 
Sensor Agents are sensitive to conditions in the 
environment (colors, words, numbers, shapes, etc.) and 
send messages to selected Knowledge Agents. For 
instance, a Sensor Agent that can detect colors (here: 
the recognizeColor agent) will be linked to color 
Knowledge Agents; it will send a message to the “Red” 
Knowledge Agent if it detects red in the environment. 
The system’s environment is similar to (portions of) 
human environments. In the WCST simulation 
described below, the system is presented with cards 
identical to those human subjects see in real WCST 
experiments. Effectors Agents act on the environment. 
They are linked to Knowledge Agents whose role is 
relevant to the action they can perform. For instance, 
the NameColor Effector Agent will be linked to every 
color Knowledge Agent (thus implementing the 
capacity to name the colors we see). Taken together, the 
Sensor and Knowledge Agents make up the system’s 
perceptual system. This means that the system’s 
perceptual abilities are always a function of the Sensor 
Agents’ information extracting capacities and of the 
system’s knowledge about the environment, as 
implemented in the network of Knowledge Agents. 
Similarly, the Effector and Knowledge Agents form the 
system’s action system. Both perception and action are 
thus fully situated and contextual. The system’s long-
term memory is made up of the network of Knowledge 
Agents in the Reactive Group, and the system’s 
working memory (WM) at a given time is made up of 
the Knowledge Agents that are activated at that time. 
This implementation of working memory is consistent 
with the work of Engle (2010), in which WM is seen as 
a set of temporarily activated representations in long-
term memory. 
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3.1.2. Algorithmic level 
 

Corresponding to Stanovich’s Algorithmic Mind, the 
Algorithmic Group is responsible for the control of the 
system. Based on a general idea developed by Cardon 
(2005), control is achieved by means of assessing and 
affecting the “morphology” of the system. 
RequestStatus Agents (E), which belong to both the 
Reactive and Algorithmic Groups, regularly query the 
status of Knowledge Agents; that is, number of 
messages sent to other agents during the last interval. 
Status Agents (F) represent the activity of the Reflective 
Group at a given time in the form of a distance matrix 
that records the message passing activity at that time 
(Status Agents will also send a reduced representation 
of the activity in the Reactive Group to the Reflective 
Group; see below). The distance between two concepts 
in the conceptual map is measured by the number of 
messages sent between the Knowledge Agents that bear 
the corresponding words as their role. Globally, this 
matrix thus represents a form or shape. The Algorithmic 
Level also contains the short-term goals of the system in 
the form of a graph of Goal Agents (which is sent by 
the Reflective level; see below). Each Goal Agent (I) 
contains a distance matrix that specifies the distance 
between each Knowledge Agents that is necessary if the 
system is to reach this goal. 

Delta Agents (G) compute the difference between 
the matrix provided by the Status Agents and that 
provided by the Goal Agents. The resulting difference 
(another matrix) is provided to Control Agents (H) that 
send regulation messages to Agents in the Reactive 
Group, telling them to modify (i.e., increase or 
decrease) their activation so that their global activity 
more closely matches the shape of the current short-
term goal. By activating elements of the system’s long-
term memory in relation to its current goal, thereby 
determining the current content of working memory, 
agents in the Algorithmic Group constitute the system’s 
attentional system. 
 

 
3.1.3. Reflective level 
Corresponding to Stanovich’s Reflective Mind, the 
Reflective Group is responsible for the logical and 
analytical skills of the system. Each agent in the 
Reflective Group has a shape (a distance matrix) as its 
role, which, as explained above, indicates the shape the 
Reflective Level must be in for the system to achieve a 
simple goal. Goal Agents (I) are organized in a directed 
graph. Every path in this graph represents a plan the 
system can applied to achieve a complex behaviour. 
Goal Agents are organized into a graph where each path 
represents a complex plan or strategy decomposed into 
a sequence of simple objectives (steps in the plan).  A 
path (a sequence of simple goal path – in the WCST the 
path consist in a single objective but it could be longer 
for other tasks) (J) will be sent to Goal Agents of the 
Algorithmic Group, which will take care of its 

execution. Following Stanovich’s Tripartite 
Framework, agents in the Reflective Group have access 
to a reduced representation of the environment, which, 
as explained, is provided as a matrix by the Status 
Agents of the Algorithmic Group (K). The similarity 
between these two matrices, computed by the Goal 
Agents, determines the activation of the Goal Agents, 
which propagates from the Agent most matching the 
reduced representation to those that follow in its path. 
The last agent in the path sends the parsed path to the 
Algorithmic Group. The shortest path (the simplest 
model) or the one the most activated (the model used 
more recently or more often) thus prevails over the 
other paths. Goal Agents of the Algorithmic Group will 
execute this path step by step (this corresponds to 
Stanovich’s serial associative cognition). 
The path executed by serial associative cognition 
provides the system with the sequentiality necessary to 
achieve complex goals. However, the system does not 
thereby lose its dynamicity. Reduced Representation of 
the environment are sent on a regular basis to the 
Reflective Group that can, based on the current state of 
the environment, interrupt serial cognitive association 
either by setting a new starting point in the path or by 
taking a new branch in the graph,. Decision-making at 
the Reflective level is therefore dynamically influenced 
by the current strategy (the decided path) of the system 
and the state of the environment.  

 
3.1.4. Decoupling 
Cognitive decoupling is an operation that is initiated by 
Agents of the Reflective Group and achieved by agents 
of the Algorithmic Group when multiple strategies 
(meaning two or more GoalSet Agents) are selected at 
the algorithmic level. The Goal Agent, which usually 
carries the  unique goal matrix selected at the Reflective 
level triggers cognitive decoupling. 
When the Goal agent hesitates between two strategies 
(when the activation levels of two GoalSet agents are 
close – closeness being defined by a sensitivity degree 
which we will further explain in section 4.4.1), it sends 
(L) a message to agents of the reactive group informing 
them that the system is now in simulation mode. It also 
triggers the creation of a possible world. A limited 
number of agents (currently 20) mirrors the activity of 
agents  at the reactive level according to the reduced 
representation previously sent by Delta agents. Agents 
in this possible world are assigned dynamically the 
same roles and links as those agents from the Reactive 
Group they are replicating. This possible world 
corresponds to the separate secondary representation we 
presented earlier in section 2.1.2. Accordingly, 
SecondaryRepresentation agents are used instead of 
Knowledge agents and a distinct group (Algorithmic 
instead of Reactive) is used, to ensure that action on this 
secondary representation doesn’t impact the current 
representation of the world (i.e., Knowledge Agents 
from the Reactive Group).  

When agents of the algorithmic group are informed 
that they are in simulation mode, they reroute (M) their 
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messages to the SecondaryRepresentation Agents of the 
Algorithmic Group instead of the Knowledge Agents of 
the Reactive Group. Once the simulation is completed, 
the activation of Goal Agents is regulated accordingly at 
the Reflective level (N), therefore dictating the future 
course of action. 

Cognitive operations (goal inhibition and 
selection) are carried out by the Control Agents, Delta 
Agents, and agents from the Reflective Group  during 
cognitive decoupling, making it considerably difficult to 
sustain other activities in the system at the reactive level 
(cognitive cost of decoupling).  

For the WCST, the decoupling has been set to 
perform opposite style of thinking: a chosen 
categorization rule (the one with the highest activation 
or a random one if activations are equal) is applied in 
the possible world and is thereafter negated (negative 
feedback from the environment),  thus a new 
categorization rule (the alternative) emerges. Goal agent 
therefore sends activation messages to the GoalSet 
agent bearing the first activated rule, and half less 
activation messages to the one bearing the alternative 
rule: if the first rule is negated in the “real” world, the 
alternative rule will therefore be the second one to be 
activated.  

 
3.2.  Neurological plausibility 
 

 
 

Figure 3: Functional mapping.� 
 

We cannot claim fine-grained neurological plausibility 
for this system; however, parallels can be drawn at the 
higher level of gross neurological structure and 
mesoscopic dynamical activity, allowing us to claim 
that a measure of neurological plausibility for the 
architecture. The neurological plausibility of dual 
process theories has been extensively studied (Goel, 
2009; Lieberman, 2009). Stanovich’s tripartite 
framework, individually, is also supported by 
neurological data (Stanovich, 2010). Since the 
design of our architecture is based on this model, it 
naturally inherits its neural plausibility. Cognitive tasks 
supported by the Algorithmic Mind lead to an activation 
of the Anterior Cingulate cortex (ACC). Performance of 
Algorithmic Mind processes leads to an activation of 
the ACC (Stanovich, 2010). There is furthermore 
evidence that decoupling (supported in our system by 
SecondaryRepresentation Agents) is achieved by the 
Dorsolateral PreFrontal Cortex (DLPFC) (Stanovich, 
2010). 

Furthermore, the different roles ascribed to the 
agents in the architecture correspond to functional roles 
that has been mapped to specific anatomical structures – 
see Figure 3 (Fuster, 2008; Botvinick et al., 2001). It 
must be noted that the  ACC has been identified as the 
response conflicting monitoring system (Botvinick et al. 
2001) in the human brain, regulating control’s 
engagement. Conflict monitoring is achieved in our 
system by the collaboration between the Delta Agents 
and the Control Agents. The DLPFC, which provides 
support for goal directed behaviour is implemented in 
our system by Goal Agents. Regulation of posterior 
brain regions is implemented by the regulating 
messages sent by the Control Agents to agents of the 
Reactive Group. Knowledge Agents are linked to 
Sensor Agents as the Medial Temporal Lobe (MTL in 
figure 3) is known to mediate sensory memory. The 
medial temporal lobe is also identified as the functional 
locus of semantic memory. “Effector” and “Sensor” 
agents are associated with distinct roles in the Reactive 
Group since their functional role is achieved by distinct 
anatomical structures (PreCentral Gyrus, PostCentral 
Gyrus and Visual Cortex in figure 3). Through nested 
sensorimotor and goal-directing loops, we are therefore 
able to implement the cognitive dynamics of a goal-
sensitive sensory-motor architecture.   

Finally, we intend future developments of the 
architecture to further increase its neurological 
plausibility. The majority of the existing circuits in the 
system (its message passing channels) mirrors 
neurochemical pathways of the human brain (for 
example, dopamine pathway will in our system be 
represented by the message passing activity between 
GoalSet Agents and Goal Agents in the Reflective 
Group, and between Knowledge Agents and Effector 
Agents, to respectively represent the reward effect of 
dopamine, and its impact on motor function (Fuster, 
2008)). This property will allow us to further explore 
the dynamics of cognitive processing in the system in 
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future works by varying the message passing activity in 
distinct pathways (neuromodulation).  

 
 

4. EXPERIMENT AND RESULTS 
 

4.1. Implementation 
We chose a “generic” multi-agent Platform (Madkit) 
that allows the creation of agents with different ranges 
of complexity and in which large numbers of agents can 
operate in parallel. Madkit implements the AGR 
(Agent/group/role) model, which we found particularly 
suitable to implement the various groups of agents 
(levels), and the diversity of agents in each group, as 
described previously. In AGR (Ferber et al., 2003): 

 
• An agent is an active entity communicating 

and playing a role within one or several 
groups. There are no design constraints 
regarding the complexity of the agents 
(reactive/cognitive). 

• A group is a set of agents sharing common 
characteristics. Groups define the or 
ganizational structure of the system. 

• A role is an abstract representation of agent’s 
functionality within a group. We chose to 
assign a thread to each agent in order to 
preserve its dynamicity. 

 
4.2. Experimental setting 
The system was given as parameters three goals 
matrices corresponding to the color, shape and number 
categorization. To implement the context effect of the 
four reference cards that the subject must select to place 
each of his response cards (material adapted from 
Heaton et al., 1993), we added the following links in the 
conceptual map of the system: Red – triangle – one, 
Green – star – two, Yellow – square – three, Blue – 
circle – four. We also linked the shape, color, and 
number knowledge (already present in ConceptNet) to 
the sensors. A script provided the system with the series 
of cards it had to categorize and evaluated the system’s 
answer. The categorization rule was changed after 6 
consecutive successes. The experiment consisted of 128 
cards with figures varying in shape, number and color. 
The script attempted to test 6 categorization rules 
(“shape”, “color”, “number” x 2) on the 128 cards. No 
warning was sent to the system before a rule change. 

 
4.3. Description of the interactions 
Although our system is not sequential in nature 
(organizations work in parallel and the global behaviour 
of the system emerges from the interactions of all 
agents in the system), we describe below the WCST 
task processing sequentially to ease its understanding. 
However, it should be borne in mind, that this 
sequentiality emerges from the system’s parallel 
processing.  

 

 
Table 1: Variation of decoupling’s degree of sensitivity. 
 
Degree of 
sensitivity 

1/6 1/8 1/10 

Trials 89.1 120.41 126.6 
 

 
Table 2: Excerpt of one simulation’s logs  

 

 
Step 1 - When a new card appears in the environment, 
sensors (for color, shape, and number) extract its 
relevant properties and forward the information to 
Knowledge Agents in the Reactive Group where 
activation spread according the links in the conceptual 
map.  
Step 2 - Status Agents forward this information 
(activation) to the algorithmic level. 
Step 3 - A reduced representation of the environment is 
produced by Delta Agents and forwarded to the 
reflective level 
Step 4 – The received reduced representation leads to 
the activation of competing rules (by pattern matching 
between the goal they are bearing and information from 
the reduced representation).  

(Please note that Step 5 to Step 7 – included – 
are conditional to the fact that there is more than 
one winning GoalSet Agent, otherwise, step 8 is 
directly applied.) 
Step 5 - When there is more than one winning GoalSet 
Agent, meaning more than one winning goal, cognitive 
decoupling occurs. A mini world (secondary 
representation made after the – primary - representation 
of the world carried by the system at the reactive level) 
is created where agents are initialized after the reduced 
representation of the world sent at step 4. 
 Step 6 – Messages from the Control agents (regulation) 
and from RequestStatus agents (status of the concept 
agents) are rerouted from the reactive level to the 
secondary representation that has been initialized at step 
5.  
Step 7: Rules that emerged in the secondary 
representation during cognitive decoupling are sent to 
the reflective level (with different activations). 
Step 8: The corresponding matrix (the one that a 
GoalSet Agent was carrying) is sent to the algorithmic 
level. 
Step 9 – Rerouting is stopped. Agents of the 
Algorithmic group are back in charge of the regulation 
the Reactive level. They regulate agent’s activity 

Serie Trial Response Simulation  
1 correct  
2 correct  
3 correct color 

shape 
4 Incorrect : shape  

Color 

5 correct  
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according to the activity matrix associated  with the 
system’s current goal. 

 
4.4. Results 
 

4.4.1. Cognitive decoupling 
In the system, decoupling occurs when two competing 
answers are identified (when two answers have close 
activation levels). We ascribed a degree of sensitivity to 
the Goal agent which starts  decoupling operations: the 
degree of sensitivity determines how close the two 
competing answers need to be to start cognitive 
decoupling. 

In Table 1, we show the performance of the system  
in regards to this degree of sensitivity. We can see that 
the higher the degree of sensitivity is (meaning the more 
decoupling operation occur), the lower is the number of 
trials required to perform the task. Please note that, due 
to the experimental procedure (section 4.2), the 
maximum number of trials allowed to complete the task 
can’t be higher than 128. For the “1/6” degree, system’s 
performance was better than for human subjects, this 
results shows interesting premises for the usability of 
this architecture for the simulation of cognitive tasks 
with different cognitive profiles (replicating individual 
differences of subjects with different cognitive styles). 

Table 2 presents the log for the simulation of a 
WCST task with the 1/8 degree. For the “color” serie, 
we can observe the decoupling being launched in the 
following situations: 

• Trial 3: a simulation/decoupling is launched 
due to two competing answers (“color” and 
“shape”). The system creates via decoupling a 
possible world (separate box) where the color 
categorization rule is applied and ruled wrong. 
The second emerging rule is the shape 
categorization rule. 

• Trial 1 and 2: “color” (a wrong answer) is 
selected. In the possible world created,  
“shape” activated first. The possible world 
being a copy of the system’s representation of 
the world, “color” has already been marked as 
a wrong answer, therefore the selected second 
answer is number. 
 

4.4.2. Factors analysis 
We focused our analysis on 4 factors: 

 
• Failure to maintain set: failure to carry out a 

complete categorization  after a number of 
consecutive correct trials; 

• Perseverative errors: Mean number of trials in 
which the subject persists in categorizing items 
with the preceding rule after rule change; 

• Categories completed: mean number of 
completed categories; 

• Trials: Mean number of trials to complete 6 
categories. 

 

 
Figure 3: Mean « Failure to maintain set » errors, 
Perseverative errors and categories completed by our 
system (mean number for a hundred trials) and by a 
control group of healthy human subjects taken from 
Bishara et al.‘s study (2010). 

 
We compared our results (degree of sensitivity: 1/8) for 
the three first factors to those of human subjects. 
Results are presented in figure 3. 
The fourth factor, mean number of trials to complete the 
task in our system was 120.41 against 101.12 in 
unpracticed healthy human subjects (Basso et al., 1999). 
The maximum number of rules the system (for his 128 
trials) was able to discover and apply varied between 5 
and 6 (mean number being 5.33). 
During simulations, we were able to observe two 
different types of wrong answers: those due to a failure 
at the stage of rule-discovery (reflective level – failure 
at the hypothesis testing level) and those due to a failure 
of inhibition (inhibition of the reactive level by the 
algorithmic level – failure of the working memory in 
the human subject). 
Our system was able to reproduce the pattern of results 
observed in human subjects (see Figure 3); however, its 
perseverative tendency was worse than that of human 
subjects. We believe that this result reflects a failure of 
inhibition on the part of Control Agents, showing a 
deficit at the algorithmic level: a failure to inhibit the 
routine activity that had been established by previous 
trials at the reactive level. On the other hand, the low 
value for the « failure to maintain set » factor shows a 
good flexibility of the system for the selection of new 
rules, therefore validating the work of the reflective 
level. To improve the system in future works, we 
therefore plan to work on calibrating the message 
passing activity of Control Agents in the Algorithmic 
Group. This correction might also help increase the 
number of completed categories. 

 
5. CONCLUSION AND FUTURE WORKS 
In this paper, we present a cognitive architecture  
implementing Stanovich’ Tripartite Framework. We 
already produced classical and semantic Stroop task 
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simulations to validate the two first levels of the 
cognitive architecture: algorithmic and reflective mind 
(Larue et al. 2012). In this paper, we present a 
validation of its computational soundness as a whole. 
The WCST simulation we perform on this architecture 
is a concrete demonstration of how the three levels can 
interact to produce a complex behaviour involving 
different levels of cognition in one single structurally 
unified tool. The WCST allows a study of the 
interaction between the algorithmic and reflective 
levels, and more specifically the initiation of 
simulation/decoupling processes. Decoupling is a key 
process that sustains deliberative behaviour by allowing 
hypothesis testing.  In this task, automatic cognition is 
observed in the initial reaction of the system to stimuli, 
algorithmic cognition allows the system to achieve trial-
and-error adaptation and hypothesis testing (e.g. 
simulation) initialized thanks to the Reflective level 
from which will emerge the action to be performed by 
the system. To implement the dual nature 
(sequentiality/rule-following and reactivity/dynamicity) 
of human cognition, and thus meet the duality 
challenge, we combine aspects of classical symbolic 
(sequentiality/rule-following) and connectionism 
(reactivity/dynamicity) into a structurally unified 
cognitive architecture. We were able to combine those 
two approaches (dynamicity and sequentiality) using 
one single computational intelligence paradigm (Multi-
agent system). Results were encouraging concerning the 
interaction of reflective and reactive levels of the 
system, but they we will need in the future to improve 
the system’s inhibition ability at the algorithmic level..  
In future work, we plan on addressing this issue by 
introducing a new variable to the system: 
neuromodulations. Neuromodulations would modulate 
communications between agents inside a group and 
between agents in different groups of the system, 
therefore modifying the system’s general dynamics 
(allowing us finer-grained control on the dynamics but 
also, for example, to induce pathological behaviour in 
the system). Also, this task enabled us to test hypothesis 
testing abilities which are primordial for a deliberative 
behaviour (especially selection of the good strategy); 
however, the strategies among which the system had to 
chose where very simple strategies. In the future work, 
we plan on using the system with more complex 
strategies.   
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