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ABSTRACT 
Mathematical modeling has long been used for 
prediction of biological phenomena, but practical use of 
mechanistic models for data analysis is not as common. 
One of the major obstacles is the lack of practical 
methods for model based data analysis. This study 
presents methods for predicting global sensitivities of 
model outcomes to model parameters and shows how 
global sensitivities can be used for predicting sets of 
globally identifiable parameters. These methods will be 
applied to analyze dynamics in a model designed to 
predict baroreceptor regulation of heart rate during 
head-up tilt (HUT).  
 
Keywords: Global sensitivity analysis; Global 
parameter identifiability; Baroreflex regulation of heart 
rate; Head-up tilt. 

 
1. INTRODUCTION 
The baroreflex control system, part of the autonomic 
control system, is responsible for the regulation of the 
blood pressure and thus for organ perfusion, which is 
especially important in the brain. Dysfunctional 
autonomic regulation is associated with postural 
hypotension and syncope, which has negative impact on 
quality of life. This problem is often observed (Brignole 
2001), yet few methods are available for analysis of 
clinical data routinely recorded in the laboratory. 

The baroreceptor reflex system consists of a 
number of elements: Stretch sensitive baroreceptors in 
the wall of the carotid sinus stimulate firing of afferent 
nerves, which are integrated primarily in the nucleus of 
the solitary tract. At this location several stimuli are 
integrated causing modulation of parasympathetic and 
sympathetic outflow, which in turn determines release 
of neurotransmitters enabling modulation of heart rate. 
Several models have investigated this process (Ottesen 
and Olufsen 2011), though few have been successfully 
used for analysis of clinical data.  
 This paper discusses a model adapted from 
previous studies that predicts the heart rate, global 
sensitivity analysis and parameter identification. Global 

sensitivities will be calculated as the average of the 
local sensitivities over the entire parameter space. The 
latter will be computed using a quasi-random Monte 
Carlo method based on Sobol’s algorithm (Joe and Kuo 
2003). Sensitive parameters will be further analyzed to 
predict a set of parameters that are globally identifiable. 
The latter requires prediction of correlations among 
model parameters. Two methods will be used for this 
part: analysis of pairwise correlations (Olufsen and 
Ottesen 2012) and a method that combines a principal 
component analysis (PCA) with analysis of 
orthogonality (Li, Henson and Kurtz 2004).  

Sensitivity and identifiability techniques developed 
here will be applied to analyze measured blood pressure 
from a healthy young adult undergoing a head-up tilt 
table test. 

 

Figure 1: Blood pressure (bp) [mmHg] and heart rate 
(H) [beats/min] recorded during HUT. The displayed 
data are from a young healthy adult.  
 
2. MATHEMATICAL MODEL 
The mathematical model developed in this study 
incorporates the parts of the baroreflex feedback system 
that modulates heart rate. The model (shown in Figure 
2) is an extension of previous a previous model 
(Olufsen, Tran, et al. 2006).  
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Figure 2: A schematic view of the model components 
included to predict baroreflex regulation of heart rate 
during HUT.  

 
In summary, the model uses blood pressure data 

along with information about the subjects’ age, gender, 
resting heart rate, and mean blood pressure as inputs to 
predict heart rate.  

First, the firing rate (n) of the baroreceptors n is 
predicted by  

(1)
dn
dt

= ki
dp
dt
n(M − n)
(M / 2)2

− n − N
τ i

, n = ni∑ ,  

where ni is the firing rate of the baroreceptor of type i, 
M is the maximum firing rate and N is the threshold 
firing rate, dp/dt is the rate of change of blood pressure, 
ki is a constant determining how sensitive the receptor is 
to changes in blood pressure, and  is a time constant 
that determines the rate at which the firing rate decays 
to the threshold value.  
 Parasympathetic and sympathetic outflows are be 
predicted as 

(2)   Tp =
n
M
,    Ts =

1− Tp,d
1+ βTp

,  

whereβ  is a constant controlling the relationship 
between the parasympathetic Tp and the sympathetic Ts 
outflow. Tp,d is the delayed parasympathetic outflow 
given by 

(3)       Tp,d = c (t − s)De−a (t−s )/td
−∞

t

∫ Tp (s) ds , 

where D and a, an integer and a real number, 
determines the shape of weight function for the signal, 
td is the time for the largest effect, and c is a 
normalization constant determined from D and td. This 
formulation is different than what is found in the 
literature. It has the advantage of easier numerical 
implementation and reflecting a distributed delay, which 
by the authors is believed to be more physiologically 
correct than a discrete delay. 
 The concentration of the neurotransmitters 
acetylcholine Ca and noradrenaline Cn are predicted 
from 

(4)
 
dCa

dt
=
Tp −Ca

τ a
, dCn

dt
= Ts −Cn

τ n
,   

where 𝜏! and 𝜏! are time constants. Finally, the build 
up of electrical potential (φ ) in the pacemaker cells of 
the heart is determined by 

(5)         
dφ
dt

= H0 1−MaCa +MnCn( ),  
where H0 denotes the default depolarization rate when 
no neurotransmitters impact the system, and Ma, Mn 
denote the sensitivity to the neurotransmitters. From this 
expression the heart rate can be calculated, assuming 
that each heartbeat corresponds to an increase in the 
potential build up by 1. 
 
3. SENSITIVITY ANALYSIS 
Classically, sensitivities can be calculated as  

(6)           S(t;θ ) = ∂y(t;θ )
∂θ

,  

where y denotes the model output (heart rate) and θ  the 
model parameters. For linear (in the parameters) 
models, sensitivities can be predicted analytically, but 
for nonlinear models this relation is typically predicted 
by linearizing around current values of the parameters. 
For a model that depends nonlinearly on the parameters 
the sensitivities will change depending on the parameter 
values. This can produce challenges since the 
sensitivities are important both for determining which 
parameters are identifiable and for estimating parameter 
values that allows accurate prediction of the data. One 
way to get more precise information about the 
sensitivity is via prediction of global sensitivities, which 
estimate how the model output vary as an average over 
the parameter space. A possible approach for predicting 
global sensitivities is via Sobol’s global sensitivity 
indices, which builds on an analysis of variances 
(ANOVA) (Kiparissides, et al. 2009). Predicting global 
sensitivities is computational intensive, due to the large 
number of evaluations of the model output. Oftentimes 
computational efficiency is of high importance. One 
method to improve efficiency is to use derivative based 
global sensitivity measures (DGSM), which are 
computed by integrating sensitivities over the parameter 
space (Kiparissides, et al. 2009).  
 Calculation of DGSM requires computation of local 
sensitivities, which in this study are predicted from the 
model and parameter Jacobians. The latter are 
calculated using finite differences. Both the ODEs 
representing the model and the local sensitivities are 
computed numerically using Sundials ODE suite 
(Serban and Hindmash 2005). Within this software, the 
numerical integration over the parameter space is 
carried out using a quasi-random Monte Carlo method. 
Parameter sets are generated using Sobol’s algorithm, 
and the global sensitivities are computed as the average 
of the local sensitivities.  
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Fig. 2 Model components. Mean blood pressure, age and resting heart rate is used as an input to the model. The model

consists of 5 components: a module predicting averaged arterial blood pressure, a module predicting the baroreflex firing

rate, modules predicting sympathetic and parasympathetic outflow, and a heart rate module. Dependencies between modules

are marked by arrows.

HereM denotes the maxium firing rate, κi the gain, dp/dt denotes the time derivative of the average

pressure and τi, i= 1,2 are time scales [49,50].

The afferent firing rate n is integrated in the NTS, where sympathetic fsym and parasympathetic

fpar outflows are generated. To account for complexity of the sympathetic pathway, we predict

the sympathetic outflow as a function of n(t− τd), where τd is a constant time delay. The delay

along the parasympathetic pathway is negligible, and consequently the parasympathetic outflow is

modeled directly as a function of n. The resulting equations predicting sympathetic and parasym-

pathetic outflow are given by [49,50]

fpar =
n
M
, fsym =

1−n(t− τd)/M
1+β fpar

.

The next step involves prediction of the concentration of neurotransmitters acetylcholineCach and

noradrenalineCnor, which can be obtained from

dCnor
dt

=
fsym−Cnor

τnor
, (13)

dCach
dt

=
fpar−Cach

τach
, (14)

where τnor and τach are time scales, [49,50]. Finally, we computed heart rate as

h= h0(1+mnorCnor−machCach), (15)

τ i
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 More specifically, the local sensitivities are 
calculated by solving the system of ODE 

(7)      

      dS
dt

= JyS(t,θ )+ Jθ ,

S(t,θ ) =
dy
dθ
(t,θ ),   Jy =

df
dy
,   Jθ =

df
dθ
,
 

where 𝑦(𝑡, 𝜃) is the model output of the system with 
state variables x(𝑡, 𝜃) described by 

(8)         
dx
dt

= f (t, x;θ ),    x(0;θ ) = x0,

y(t,θ ) = g(t, x(t);θ ).
     

In (7-8) Jy denotes the Jacobian and 𝐽!the parameter 
Jacobian. If the model consists of k ouput variables, m 
parameters that are evaluated at n time steps the local 
sensitivity matrix can be written as 

(9) S =
dy
dθ

=

∂y1 / ∂θ1(t1)  ∂y1 / ∂θm (t1)
  

∂y1 / ∂θ1(tn )  ∂y1 / ∂θm (tn )
  

∂yk / ∂θ1(t1)  ∂yk / ∂θm (t1)
  

∂yk / ∂θ1(tn )  ∂yk / ∂θm (tn )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

 Sometimes it might be relevant to calculate relative 
sensitivities defined by 

(10)   Si, j (tk ) =
∂yi
∂θ j

(tk )
θ j

yi (tk )
.

 

Once, local sensitivities (relative or nonrelative) are 
computed, the global sensitivities can be found by 
integration over the parameter space. This is done using 
Sobol-sequences for sampling parameter sets within the 
parameter space. For each parameter set local 
sensitivities are computed. Global sensitivities are then 
found as an average of the sensitivity matrix calculated 
at N different points in parameter space, i.e. 

(11)                  
 
Sglobal (tk ) =

1
N

Si (tk )
i=1

N

∑ .   

4. IDENTIFIABILITY AND SUBSET SE-
LECTION 

Only sensitive parameters can be identified, but in 
addition to being sensitive parameters may be correlated 
(Ipsen, Kelley and Pope 2011). Parameters that are cor-
related cannot be estimated reliably. However, it may 
not be trivial to identify parameter correlations globally. 
In this study, we denote the process of identifying 
parameters that can be estimated given a model output 
and corresponding data for subset selection. Parameters 
not in a subset (i.e., those that are insensitive or 
correlated) will be kept constant at their a priori values, 

while the uncorrelated sensitive parameters will be 
estimated as discussed in section 5. 

This study adapts two previously developed 
methods for prediction of global sets of uncorrelated 
parameters: the structured correlation method (Olufsen 
and Ottesen 2012) and the orthogonal sensitivities 
method (Yao, et al. 2003, Li, Henson and Kurtz 2004). 
Both are originally developed for local analysis, but will 
be modified to work with global sensitivities. The 
structured correlation matrix method is based on finding 
pairwise correlations of the model Hessian, while the 
orthogonal method is based on analysis of parameters 
sensitivities predicted using PCA. With this method, 
parameters are ranked according to sensitivity from the 
highest to the lowest. Parameters are added to the subset 
one-by-one ensuring that the subset remains orthogonal 
using a process is similar to Gram-Schmidt 
orthogonalization. Subsets obtained with these methods 
will be compared and an “optimal” subset will be 
selected. 

4.1.  Structured correlation matrix method (SCMM) 
The structured correlation matrix method (SCMM) is 
based on a principle of excluding correlated parameters 
from the set of parameters until no correlations remain. 
To evaluate the correlations the correlation matrix  

(12)   
 
ci, j =

Ci, j

Ci,iCj, j
  

is considered (Ottesen and Olufsen 2011). Here 𝑐!,! 
describes the degree of correlation between parameter i 
and j, with numeric value between 0 and 1. C is the 
correlation matrix, the inverse of the model Hessian, 
𝐶 =   ℋ!!, which is given by ℋ = 𝜎!!𝑆!𝑆. The 
inversion of the model Hessian requires that S be non-
singular. In this study the limiting value 𝛾 between 
correlation and no correlation for c is chosen to be 
𝛾 = 0.9. When a correlated pair is found the least 
sensitive parameter is excluded from the subset, judged 
by the two-norm of the sensitivity, 

(13)   
 
Sj = [Sj (ti

i=0

n

∑ )]2 .
 

Using these measures the procedure can be described: 

1. Calculate the correlation matrix c. 
2. Find the parameter pair (i,j) with the highest 

correlation. 
3. If 𝑐!,! ≥ 𝛾 lock the parameter with the smallest 

two-norm 𝑆. If 𝑐!,! < 𝛾 terminate the 
algorithm. 

4. Repeat from 1. 

4.2.  Orthogonal sensitivities method (OSM) 
In contrast to SCMM this method is based on the 
principle of building a subset by adding one parameter 
at the time. Initially the parameters are ranked by their 
importance index, which for parameter j is given by 
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(14)   
 
Ej =

λiQi, ji=1

m∑
λii=1

m∑
,   

where m is the number of parameters, and 𝜆! is the ith 
eigenvalue and 𝑄∙,! the jth eigenvector of the matrix 

(15)   
 
X = ST S   

with s denoting the relative sensitivities defined in (10). 
If n parameters have been selected for the subset 𝜃!, the 
identifiability index of parameter j is given by Ij = Ej dj, 
where dj is the orthogonality index. Denoting the 
column of 𝑆 corresponding to the lth selected parameter 
𝑠!! and assuming that 𝑠!! are linearly independent any 
vector in the n-dimensional vector field can be 
represented by 

(16)   
 
s = akll=1

n∑ skl ,   
where ak are constants. Consider another parameter h 
with relative sensitivity 𝑠!, which has not been included 
in the subset, the objective is to find vector 𝑠 closest to 
𝑠! by determining the coefficients 𝑎!! that solves 

(17)   
 
min
akl

1
2
(sj − s)

T (sj − s).   
 
This is equivalent to solving the linear system 

(18)

sk1
Tsk1  skn

Tsk1
  
skn
Tskn  skn

Tskn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

a =

sj
Tsk1

sj
Tskn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

 

Since the 𝑠! are chosen to be linearly independent, the 
covariance matrix for the selected parameters is 
invertible and there is a solution for a. Knowing the 
vector 𝑠 closest to 𝑠! the orthogonality index is 
calculated as sine of the angle between them 

(19)  
 
dj = sin arccos

sj
Ts
sj s

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.   

The procedure for ordering the parameters can then be 
described as follows. 

1. Calculate the Importance index. Selected the 
parameter with the highest value for the subset. 

2. Calculate the orthogonality index for the 
remaining parameters compared to the current 
subset.  

3. Use the orthogonality index dj with the 
importance index Ej to calculate the iden-
tifiability index Ij. 

4. Add the parameter with the highest 
identifiability index to the subset. Repeat from 
step 2. 

5. RESULTS 
The results presented in this section are based on blood 
pressure data obtained from a Head-Up Tilt experiment. 

5.1.  Global sensitivities 
The calculation of the global sensitivity estimate is 
based on Sobol’s algorithm for integration using 5000 
points in the parameter space and the intervals for the 
parameters given in Table 1. 5000 points was used as a 
preliminary investigation showed that including more 
points did not change the results. 

The two-norm of the global sensitivity for each 
parameter is used to rank the parameters from most to 
least sensitive. This is illustrated in Figure 3. 

 
Table 1: Intervals defining the parameter space. 
Intervals are based on the parameter values found by 
(Olufsen, Tran, et al. 2006). 

 
Figure 3: Parameters sorted by two-norm of the global 
sensitivity. Values have been scaled by the maximum 
value. 

5.2. Subset selection 
SCMM and OSM have been used to perform the subset 
selection. For both methods the global relative 
sensitivities were used. Furthermore, both analyses were 
performed without the possibility of including 𝜏! in the 
subset. This parameter reflects a very long timescale in 
the model on the order of 500 seconds. Hence it is 
unlikely that this parameter can be determined from 
data ranging over approximately 700 seconds. 

Using SCMM introduced above and a limit for 
correlations of 0.9 the resulting subset is 

Parameter Min. value Max. value
H

0

0.3 2.0
Ms 1.25 5.0
Mp 0.07 0.28
⌧
ach

0.1 1.0
⌧
nor

0.1 1.0
� 3.0 12

1

3 30

2

3 30

3

3 30
⌧
1

0.25 1.0
⌧
2

2.5 10
⌧
3

250 1000
t
d

3.0 12
T
par,0 0.3 1.0

a 1.5 1.5

Table 1: Parameterspace described by the interval for each parameter.

The di↵erence between Monte Carlo integration using quasi-random numbers
and actual random numbers for the parameter values is the rate of convergences
for the integration6. We have adopted Sobol’s algorithm for generation of quasi-
random numbers, as is implemented in the GSL libraries (Galassi et al., 2009).

4.1 Sobol’s algorithm

THIS IS YET TO BE FILLED OUT

4.2 Results

Using the algorithm above with the available parameter space desribed by the
intervals in Table 1 and Sobol’s algorithm for generating parameter sets, the
average sensitivities are calculated. For each parameter a timeseries describes
the senstivitiy of the model output at di↵erent points in time. In Figure 1 an
example of the sensitivities of the parameters H

0

,Mp and 
1

can be seen. The
two-norm of the sensitivities is a good measure for the overall magnitude of
sensitivity to each parameter. In Figure 2 the parameters are ordered by their
two-norm, from highest to lowest.

5 Subset Selection

We will be utilizing two di↵erent methods for subset selection. The two methods
are the structured correlation method7 and the orthogonal sensitivities method

6ref to Sobol original article
7Cite Mette+Johnny

4

H0 Tp0 Ms b Mp k3 td k1 k2 t1 t2 t3 tn ta
10−3

10−2

10−1

100

Parameter

||
S̃
||
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(20)  θ = {H0,κ1,τ1,τ 2, td,Tp0}.  
It is worth noting that this is just one subset one can 
obtain using structured correlation matrix method. Other 
variations of the algorithm will lock several parameters 
at each iteration, lock the most sensitive one, or use 
another threshold for deciding if a pair of parameters are 
correlated or not. 

Using OSM the parameters have been ranked as 
shown in Table 2. Setting the limit value of the 
identifiability index at 0.005 the resulting subset is 

(21)  θ = {H0,Ms,Mp,κ 2,κ 3, td,Tp0}.  
 

 
Table 2: Parameters ordered by the identifiability index 
of the orthogonal sensitivities method. 

It is interesting to see that the two subsets are quite 
different. Most notably SCMM omits the parameters Mp 
and Ms, which one would expect to be very important as 
they appear directly in the differential equation 
describing the potential, build up (5). Investigating the 
SCMM correlations in the subset produced by OSM 
reveals an expected correlation between the parameters 
𝐻! and 𝑀!. 

SCMM also finds that the parameters 𝜅!and 𝜅! are 
correlated, so the fact that one of these appear in each 
subset is reasonable. Finally SCMM finds that 𝜅! is 
correlated to 𝑇!!, while OSM finds that these are 
distinguishable. It is possible to obtain different subsets 
within each method, but these subsets appear to be very 
different. This difference probably arises due to the fact 
that one method investigates the sensitivity of the 
solution to the parameter values (OSM), while the other 
method utilizes the inverse, the sensitivity of the 
parameter value to the change in model output. 

While the differences are interesting it is also worth 
noting the parameters shared by the two subsets, 𝐻!, 𝑡! 
and 𝑇!!. 𝐻! is a direct scaling of the potential buildup in 
the model, 𝑡! is the delay associated with the 
sympathetic nervous system and 𝑇!! is the threshold 
value for the firing rate of the baroreceptors. It seems 

very reasonable that both methods should find these 
parameters to be important and identifiable. 
 
CONCLUSION 
Global sensitivities have been calculated using Sobol’s 
algorithm for quasi-random number generation and 
subset selection performed using two different methods, 
the structured correlation matrix method (SCMM) and 
the orthogonal sensitivities method (OSM).  

While the two methods for subset selection 
produced different subsets the parameters shared by 
both subsets appear to be very important for the model 
output and thus clearly identifiable. 

Future work in this area will include testing the 
different parameter subsets through optimization against 
simulated data as well as real data. 
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Iteration Parameter Ej dj Ij
0 H

0

� � 0.910
1 T

par0

0.259 0.354 0.092
2 Ms 0.229 0.165 0.038
3 

2

0.020 0.672 0.013
4 

3

0.040 0.151 0.006
5 t

d

0.007 0.767 0.005
6 Mp 0.075 0.061 0.005
7 

1

0.025 0.181 0.004
8 � 0.170 0.020 0.003
9 ⌧

1

0.012 0.287 0.003
10 ⌧

3

0.008 0.154 0.001
11 ⌧

2

0.002 0.231 0.000
12 ⌧

nor

0.000 0.325 0.000
13 ⌧

ach

0.000 0.290 0.000

Table 5: The parameter selected for the subset by the orthogonal sensitivities
method.

6.1 Validating optimization algorithm

Before the optimization algorithm is used to compare the di↵erent subsets, the
algorithm is tested. This is done by solving the mathematical model using the
experimental pressure data as input. The output from the model is a time series
that describes the potential build up in the pacemaker cells of the heart. From
this time series the time points of heart contractions is calculated. This format
of data corresponds to the format of the experimental data describing the heart
rate. This constructed series of time points is added random noise, and is then
used as the true solution for the optimization method. Since this artificial true
solution is output produced from the model, the optimization algorithm should
be able to find a proper fit.

The generated data can be seen in Figure 3 together with the true experi-
mental data.

————————
I have tried di↵erent settings for making the optimization method work. It

seems that the key is to find the right amount to change each parameter when
selecting new random parameter values. It’s hard to get good estimates of these
values, as they depend on the sensitivity of the model to the parameter and are
di↵erent for each parameter. Ralph introduced a method in MA797V where one
would use a cholesky decomposition of the Hessian to produce the changes to
parameters at each iteration of the Metropolis algorithm. I have not have much
luck with the cholesky decomposition, as it gives very high changes for some
of the parameters - several orders of magnitude larger than the parameter. I
have instead used the inverse of the 2-norm of the columns of S as the variance
of the parameters. This has been more successful than guessing, but not very
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