
A COMPARISON OF SYSTEM DYNAMICS AND MARKOV MODELS FOR COST-
EFFECTIVENESS ANALYSIS OF CHRONIC DISEASES 

 
 

P. Einzinger(a), R. Leskovar(b), C. Wytrzens(c) 

 
 

(a)dwh Simulation Services, Austria 
(b), (c)Vienna University of Technology, Institute for Analysis and Scientific Computing, Austria 

 
(a)patrick.einzinger@drahtwarenhandlung.at, (b)e0726512@student.tuwien.ac.at, (c)e0825785@student.tuwien.ac.at 

 
 
 
 
ABSTRACT 
To simulate chronic diseases Markov modeling is often 
used, but however the System Dynamics (SD) 
methodology is also applicable to this task. Both kinds 
of simulations can be used to analyse costs and effects 
of medical technologies for diseases. In this paper we 
perform an exemplary cost-effectiveness analysis for a 
smoking cessation programme for chronic obstructive 
pulmonary disease (COPD) patients with a simplified 
Markov model based on Menn (2009) as well as an 
analogue SD model. Such transformations from Markov 
models to SD models are always possible and lead to 
similar results. However, only the latter is of 
incorporating interactions between different patient 
groups.  

 
Keywords: markov model, system dynamics model, 
cost-effectiveness analysis, ICER 

 
1. INTRODUCTION 
Cost-effectiveness analyses are often used as basis of 
decision making of different kinds of medical 
technologies (e.g. drugs, vaccination programmes, and 
other treatments). Such a cost-effectiveness analysis 
compares the effects and the costs of different 
treatments, for example by calculating the ICER 
(incremental cost-effectiveness ratio). Various types of 
models allow a cost-effectiveness analysis as long as 
they generate the cumulative costs and effects of an 
intervention as output. 

The ICER is defined as:  
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C1 describes the costs and E1 the effects of treatment 1, 
e.g. the actual treatment. Accordingly C2 and E2 are the 
costs and effects for treatment 2, e.g. an alternative 
intervention (Briggs and Sculpher 1998). 

One possible modelling methodology for cost-
effectiveness analyses are the so called Markov models. 
They are common for modelling the progression of 
chronic diseases through several disease stages. But this 
type of model is not the only possibility to simulate 

such a chronic disease. The SD methodology, for 
example, is also applicable to this task. To show the 
similarities and differences of these two types of 
modelling as well as the generic transformation process 
from a Markov to a SD model we simulated the 
progress of the chronic disease COPD for a cohort of 
patients and calculated a cost-effectiveness analysis. 

The basic model is a simplified version of the 
Markov model for COPD and two different treatments, 
the routine treatment on the one hand and a smoking 
cessation programme on the other hand, by Menn 
(2009). We transformed this model into a SD model 
such that advantages, disadvantages and various 
possibilities of expansions can be shown.  
 On PubMed we searched for other models which 
concern COPD in every possible way. There exist a lot 
of studies about COPD and a little bit less models. 
However, the cost-effectiveness analysis, which is 
realised in this paper, is very popular in the research of 
chronic diseases. 

One model was very similar to the available 
model. The corresponding study performed a cost-
effectiveness analysis with the help of a Markov model 
and a Monte Carlo simulation with the two cohorts 
“Smokers” and “Ex-Smokers”. There are some 
expansions like the possibility to change the state of 
smoking, another discounting rate and one additional 
state (Atsou et al. 2011). 

One cost-effectiveness analysis was performed to 
see the differences between the two chronic diseases 
COPD and Asthma in the context of countries with low 
and middle income (Stanciole et al. 2011). 

One cost-utility analysis has been realised to 
research a new method to test the arterial puncture of 
COPD patients again with the help of a Markov model 
(Oddershede et al. 2011). 

One model which is really different from the others 
was a decision tree to analyse the advanced directives of 
COPD patients (Hajizadeh et al. 2010). 
 
2. COPD 
COPD is a common chronic disease of the lung. The 
different stages of the disease and therefore COPD itself 
are irreversible (GOLD 2010).  
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COPD can be divided into four different kinds of 
stages. Patients are classified after their forced 
expiratory volume in 1 second (FEV1) that can be 
measured by spirometry (GOLD 2010).  

 
Table 1: Classification of COPD Stages by GOLD 

Severity of COPD FEV1 
mild COPD ≥ 80% 

moderate COPD 50% – 79.99% 
severe COPD 30% – 49.99% 

very sever COPD < 30% 
 
 In our model mild COPD is “stage 1”, moderate 
COPD “stage 2”, severe COPD “stage 3” and very 
severe COPD is “stage 4”. A fifth possible state is 
“death”, which obviously is an absorbing state. The 
stages are distinguished by their expected life quality – 
these effects are quantified by QALYs (quality-adjusted 
life years) – and the costs of the patient’s treatment. 
Another feature of the stages is that it is only possibly to 
leave a stage by progress into the next higher stage or 
by death. Patients cannot skip a stage or get better, 
because the decline of lung function is irreversible.  

The reachability of the stages can be represented 
by a reachability graph, shown in figure 1. 
 

 
Figure 1: Reachability Graph of COPD 

 
3. MARKOV MODEL 
Markov models are based on the simulation of cohorts 
whose members transit through the states of the model. 
In this paper the simulated cohort, which contains only 
patients who suffer from COPD in stage 1 at the 
beginning, is subdivided into two different kinds of 
treatments: the routine treatment on the one hand and 
the intervention on the other hand. These cohorts are 
again divided into cohorts of smokers and persons who 
do not smoke anymore. For each of these cohorts a 
Markov model was calculated. The structure of the 
whole model is shown in figure 2, where COPD stands 
for the reachability graph of the different stages shown 
in figure 1. 

 

 
Figure 2: Structure of the Whole Model of COPD 

 
In general, Markov models have different Markov 

states. These states are affiliated with each other by 
transition probabilities. Therefore Markov models are 
stochastic models (Briggs and Sculpher 1998). In our 
case these states correspond with the stages of COPD or 
the absorbing stage “death”. “Stages 1-3” are all 
provided with three kinds of probabilities. The first one 
is the probability to stay at the same state as in the cycle 
before, the second one is the transition probability to 
move over to the next state, which means to get worse, 
and the third one describes the probability of dying. 
“Stage 4” has got only two probabilities, because the 
patient only can stay in the state or die, as no further 
progress is possible. “Death” does not have any 
transition probability which leads away from this state, 
because it is an absorbing state. Therefore people who 
die before the end of the simulation are not considered 
for the costs and effects anymore and furthermore do 
not influence the simulation any longer (Menn 2009). 
However, the feature that a person can stay in exactly 
one stage at any time of the simulation is characteristic 
of Markov models (Briggs and Sculpher 1998, 
Sonnenberg and Beck 1993). 

Furthermore, an attribute of Markov models is that 
the operation time is not continuous, but discrete. This 
means that time is partitioned into time steps, the so 
called Markov cycles (Briggs and Sculpher 1998, 
Sonnenberg and Beck 1993). The cycle length of the 
model should be short enough so that multiple changes 
in pathology, symptoms, treatment decisions, or costs 
within a single cycle are unlikely (Weinstein et al. 
2003). A patient can only change his/her stage between 
two cycles and not during a cycle. Therefore the model 
will be assumed as constant during the single Markov 
cycles (Briggs and Sculpher 1998). 

Another defining property of Markov Models is 
that each Markov model fulfils the Markov property 
(Sonnenberg and Beck, 1993). 
 

{ } { }ij=N(s)N(t)P=i=N(s)|j=N(t)P
isNisNisNjtNP nn
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===== })(,...,)(,)(|)({ 00  (2) 

 
This formula means that the future state j at time t only 
depends on the actual state at time s. Therefore the 
probability of the future state does not depend on past 
states. Particularly, the probability of the progress of a 
person’s disease is independent of the states in which 
the person has been in the past and of the states in 
which the person will be in the future (Fahrmeir et al. 
2012). 
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After simulation the ICER for the cost-
effectiveness analysis can be calculated. The ICER is 
defined in formula (1). C1 and E1 represent the costs and 
effects of the routine treatment (smokers and “ex-
smokers” combined) of COPD and C2 and E2 the costs 
and effects for the intervention to stop smoking 
(smokers and “ex-smokers” combined too). The costs of 
the intervention are equal to the costs of the routine 
therapy. However, every person who receives the 
alternative treatment adds basic costs of 596 € at the 
beginning of the simulation (Menn 2009). 
 
3.1. Simulation 
All parameters values for the simulation were adopted 
from Menn (2009).  

The running time of the simulation of the Markov 
model was 60 years. For the simulation the assumption 
that all patients start at the age of 45 in “stage 1” was 
made. A transition during simulation from smoker to 
ex-smoker was not possible. The cycle length was 3 
months.  

Because of the cost-effectiveness analysis the 
number of the persons, who receive the routine 
treatment, is the same as the number of the persons, 
who receive the intervention. If joining the routine 
treatment, the probability of being an ex-smoker will be 
0.06 and on the other hand 0.22, if joining the 
intervention. 

Table 2 shows the transition probabilities of 
reaching the next higher stage. 

 
Table 2: Transition Probability from Each Stage to the 
Next Higher Stage (Menn 2009) 

Stage Smoker Ex-smoker 
1 0.014 0.0025 
2 0.0103 0.003 
3 0.023 0.0069 

 
The mortality for smokers and ex-smokers is 

dependent on time. Therefore, there are different 
probabilities of dying for the different ages of the 
persons. The mortalities of smokers are shown in table 
3, for ex-smokers in table 4. 

 
Table 3: Probability of Dying for Smokers and the 
“Stages 1 – 4”, Depending on Time (Menn 2009) 

Age Stage 1 Stage 2 Stage 3,4 
45-49 0.0012 0.0012 0.0050 
50-54 0.0021 0.0036 0.0085 
55-59 0.0030 0.0052 0.0123 
60-64 0.0047 0.0080 0.0190 
65-69 0.0081 0.0138 0.0324 
70-74 0.0136 0.0232 0.0542 
75-79 0.0198 0.0335 0.078 
80-84 0.0340 0.0576 0.1314 
85-89 0.0473 0.0797 0.1790 
≥90 0.0884 0.1467 0.3140 
 

Table 4: Probability of Dying for Ex-smokers and the 
“Stages 1 – 4”, Depending on Time (Menn 2009) 

Age Stage 1 Stage 2 Stage 3,4 
45-49 0.0008 0.0014 0.0032 
50-54 0.0014 0.0023 0.0056 
55-59 0.0025 0.0043 0.0102 
60-64 0.0039 0.0067 0.0158 
65-69 0.0050 0.0086 0.0204 
70-74 0.0085 0.0146 0.0342 
75-79 0.0132 0.0225 0.0526 
80-84 0.0228 0.0388 0.0896 
85-89 0.0396 0.0669 0.1516 
≥90 0.0742 0.1239 0.2695 

 
The transition of persons from one stage to another 

stage can now be calculated with the help of formula 
(3). 
 

jjji,iji,+jjjiji, pA+)dp(A=A →−−−→− ⋅−−⋅ 1111, 1  (3) 
 
i stands for the cycle number and therefore for the time 
and j for the stage. pj→j+1 describes the probability of the 
possible transition from stage j to stage j+1 and di,j 
stands for the mortality of stage j at time step i, Ai,j 
contains the number of people in stage j at cycle i. This 
formula can be used to calculate all four stages for the 
simulation. But for “stage 1” the additional term          
Ai-1,j-1·pj-1→j is 0 because there is no “stage -1”. For 
“stage 4” pj→j+1 is 0 because the persons who are in this 
stage can only stay in this stage or die, therefore there is 
no transition probability to a higher stage. The number 
of persons of the stage “death” in cycle i now can be 
calculated by summing up all the people of the other 
stages at this cycle and then subtract this sum from the 
whole number of persons in the cohort.  

The costs in Euros and effects in QALYs for each 
stage are listed in table 5 and formula (4) shows the 
calculation of the costs. 
 

4,43,32,21,1 C+ACA+CA+CA=K iiiii ⋅⋅⋅⋅   (4) 
 
Ki stands for the undiscounted costs of all persons of the 
cohort at cycle i. Ai,j  j=1,..4 are the number of people in 
stage j at cycle i. Cj  j=1,..,4 are the costs for each stage 
j, which are listed in table 5. In analogy formula (4) can 
be used to calculate the effects for each time step. 

 
Table 5: Cost and Effects of “Stage1 – 4” (Menn 2009) 

Stage Costs Effects 
1 103 0.2100 
2 185 0.1975 
3 367 0.1875 
4 431 0.1625 

 
Discounting of costs and effects is needed because 

the running time of the model is 60 years. The 
discounting rate is 3%. The discounted costs and effects 
are calculated with the help of formula (5). 
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C stands for the undiscounted costs/effects, Cd for the 
discounted costs/effects, d for the discounting rate, t for 
the length of the Markov Cycle in months and i for the 
actual cycle of the process (Menn 2009).  
 
4. SYSTEM DYNAMICS MODEL 
As already mentioned in the introduction the SD model 
for COPD has been constructed on the base of the 
Markov model.  

The general structure of a SD model consists of 
stocks and flows (Bossel 2004). For modelling COPD 
the four different stages of illness and the stage “death” 
were represented by stocks, which are the equivalent of 
the states in a Markov model.  

The stage “death” could also be constructed as a 
“sink”, because it is an absorbing stage (Brailsford 
2008). 

Accordingly, flows are the equivalent of the 
transitions of patients between the stages in the Markov 
model. 

In our case, each stage has one flow to the next 
stage and one flow to the stage “death” which resembles 
the possible transitions of the Markov model. The 
transitions are influenced on the one hand by the 
number of people in a stage from which the transition is 
going away and on the other hand by the transition 
rates. The transition rates can be understood in analogy 
to the transition probabilities of the Markov model. 

The System Dynamics model is not a stochastic, in 
contrast to the Markov model, but a deterministic 
model, so not probabilities but (fractional) rates are 
needed. The rates can be calculated from the 
probabilities of the Markov model with the following 
formula: 

 
p)(=r −− 1ln      (6) 

 
Here r defines the rate and p the probability (Menn 
2009). 

But if there is more than one possibility to change 
the state, as it is the case in our model (patients can die 
or transit to the next higher stage), it can be necessary to 
correct the probabilities before transforming them into 
rates. This is the case if the probabilities of one state 
represent mutually exclusive events. In our model, as 
people who die during one time unit reduce the number 
of people who can possibly transit to the next higher 
stage. Only the proportion pd+pt·(1-pd) of patients 
would change the state in the SD model. However, 
formula (3) shows that in the Markov model the 
corresponding proportion simply equals pd+pt. To 
correct this, the transition probabilities have to be 
calculated in the following way: 
 

d

t
t p

p
=p

−1
      (7) 

 
pt describes the transition probability and pd the 
probability of dying. After that, the probabilites can be 
transformed with formula (6). This calculation leads to 
the following transition rates for the SD model: 

 
Table 6: Transition rates for the ex-smokers of the SD 
model 

Cycle Transition 1 Transition 2 Transition 3 
0 0.00250514 0.00300873 0.00694622 

20 0.00250664 0.00301145 0.00696304 
40 0.00250941 0.0030175 0.00699552 
60 0.00251294 0.0030248 0.00703546 
80 0.00251294 0.00303061 0.00706862 
100 0.00252462 0.00304909 0.00716998 
120 0.00253666 0.00307377 0.00730974 
140 0.0025616 0.00312598 0.00760795 
160 0.00260648 0.00322027 0.0081662 
180 0.00270402 0.00343014 0.00949048 
 
 

Table 7: Transition rates for the smokers of the SD 
model 

Cycle Transition 1 Transition 2 Transition 3 
0 0.014116 0.0103753 0.0233869 

20 0.0141288 0.010391 0.0234705 
40 0.0141416 0.0104078 0.0235618 
60 0.014166 0.0104373 0.0237247 
80 0.0142149 0.010499 0.0240572 
100 0.0142947 0.0106006 0.0246186 
120 0.0143843 0.0107142 0.0252566 
140 0.0145979 0.0109897 0.0268363 
160 0.0148041 0.0112551 0.0284145 
180 0.0154768 0.0121442 0.0341026 
 
The transition rates and the death rates are inserted 

in the SD model as a lookup function. 
In SD models the transitions are given by ordinary 

differential equations. Therefore, they are continuous 
time models. To calculate how many people are in 
which stage at a certain time step one has to integrate 
over time (Bossel 2004). Usually this is performed with 
numerical solving algorithms for differential equation 
systems and discrete time steps. However, theoretically 
these time steps get arbitrarily small. 

The formula how to calculate the people in one 
stage is exemplary given in formula (8) for stage 2. 
 

∫ −−
T

dtttransitiontdiettransition=stage
0

))(2)(2)(1(2(T)

        (8) 
 
Where “transition 1” describes the flow of the people 
from “stage 1” to “stage 2”, “die 2” stands for the flow 
from “stage 2” to the stock “death” and “transition 2” 
represents the flow from “stage 2” to “stage 3”. 
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The transitions, which are the flows in the model, 
are calculated in this way: 
 

222 ratetransitionstage=transition ⋅   (9) 
 
“Stage 2” is the number of people in stage 2 and the 
“transition rate 2” is the rate for the flow of people from 
stage 2 to stage 3. Both depend on time. 

The effects and the costs are two supplementary 
levels. They are calculated with the same formula (4) as 
in the Markov model. Only the discounting of costs and 
effects is different because the SD model is a 
continuous model. So it is not possible to discount in 
the same way as in the Markov model. In the SD model 
it is necessary to discount continuously. So, the costs 
and the effects are discounted with the help of the 
exponential function: 
 

∫ −⋅
T

dtrtek(t)=K(T)
0

               (10) 

 
K(T) describes the discounted and k(t) the undiscounted 
cost or effects and r the discounting rate and T the time. 

The discounting rate for the discrete case 
corresponds to the discounting for one year. The rate of 
the Markov Model stands for a year. The formula to 
calculate the rate for one cycle is: 

 
( ) 11 12/ −)(m

yc d+=d                (11) 
 
dc stands for the rate for one cycle and dy for the rate for 
one year and m stands for the length of one cycle in 
months. One cycle in the SD model is like 3 months in 
the Markov model. 

After that, it is necessary to calculate the rate for a 
continuous model with the following formula: 
 

)d+(=d c1ln                 (12) 
 
d stands for the discounting rate for the SD model. 

The model has been constructed two times, once 
for the cohort “Smokers” and another time for the 
cohort “Ex-Smokers”. The models are the same, except 
for the transition and mortality rates and the number of 
people. 

It is also possible to simulate the model with each 
of the two possible treatments. Therefore an auxiliary 
variable exists for changing the number of people that 
are smokers or ex-smokers, because this is the only 
difference between the interventions. 

The ICER is calculated the same way as in the 
Markov model. But the ICER is not calculated in the 
model itself. 

In figure 3 a simplified stock and flow diagram of 
the stages of the SD model is shown as example. Figure 
4 shows the stock and flow diagram for calculation of 
the costs end effects of the SD model.  
 

 
Figure 3: Stock and Flow – diagram of the stages 

 

 
Figure 4: Stock and Flow – diagram of the costs and 
QALYs 

 
5. THE DIFFERENCES  
The Markov model needs probabilities to calculate the 
number of people in each stage (stochastic model) in 
contrast to the SD model (deterministic model), which 
needs rates. 

The Markov model is a discrete time model 
because the transitions only can take place each time 
step. The SD model is a continuous-time model. 

The SD model is constructed over stocks in 
opposition to the Markov model where the cohort is 
divided into states. But in spite of this, the stocks are 
equivalent to the states, which means that for each state 
there has to be a corresponding stock in the 
transformation of the model. 

The discounting of the costs and effects in both 
models is different because we have on the one hand a 
discrete model and on the other hand a continuous 
model. However, the discounting factors are equal at 
each time step. 
Table 1 shows the differences between the two models. 
These differences cause the different possibilities to 
expand the models. 

 
Table 8: Differences/Equivalences between the Models 

MARKOV SYSTEM DYNAMICS 
stochastic deterministic 

discrete time continuous time 
state stock 

transition probabilities transition rates 
discrete discounting continuous discounting 

 
5.1. Expansions 
In both models, expansions are possible. In the SD 
model, one possible way is to include feedback and 
delays. In this research one possible expansion has been 
realised. People who are very ill, as in “stage 3” or 
“stage 4” of COPD, could influence people in “stage 1” 
or “stage 2”. If many people are very ill, more people 
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with mild cases will stop smoking than before 
(deterrence). This scenario can be carried out with the 
help of the Smooth-function, which averages 
information (e.g. the value of a level) over time. 
Naturally, the influence on people does not take place 
immediately, but this process needs time, for example 
due to the politics and news. The Smooth function 
implements an Information Delay, in which the delay 
time is provided (Forrester 1969).  

In this model the delay time was 12 month. A flow 
from the “stage 1 smokers” to the “stage 1 ex-smokers” 
was added, which depended from the smoothed “stage 4 
smokers”. 

In the Markov model, this expansion is not 
possible because in a Markov model all patients are 
assumed to undergo an independent stochastic process. 
Therefore the amount of patients in one state cannot 
influence the stochastic process of another patient. 
However, it is possible to simulate a Markov model not 
as a cohort, but as a Monte Carlo simulation, because it 
is a stochastic model. In this case the patients run 
through the model individually and the transition 
probabilities are weighted in randomised probabilities. 
The Monte Carlo simulation also could be used as a 
sensitivity analysis (Briggs and Sculpher 1998). 

 
6. RESULTS 
The figures 5 and 6 show the division of the smokers 
and of the ex-smokers into the five stages in the SD 
model.  
 

 
Figure 5: Division of the cohort into stages – smokers – 
System Dynamics model 
 

 
Figure 6: Division of the cohort into stages – ex-
smokers – System Dynamics model 

 
In the graphics of the SD model in opposite to the 

graphics of the Markov model no differences can be 
seen. But, in the analysis of the data are differences. 
The figures 7 and 8 show these differences of the 
division into the stages between the two models, 
because the absolute error of the two simulations is 
described. In both plots can be seen, that the biggest 
difference is in stage 2. In the cohort of the smokers, 
this difference is about 0.002 and in the cohort of the 
ex-smokers it is about 0.0003. Very noticeable is the 
oscillating behaviour of these differences, like in stage 1 
in the beginning or the stage death in the end in both 
cohorts. Especially interesting as well is the drop of the 
stage 3 in both graphics and the fast increase of the 
stage 4 at the end in the cohort of the smokers 

 

Figure 7: Differences between the Markov and SD 
model in the division into the stages – smokers 
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Figure 8: Differences between the Markov and SD 
model in the division into the stages – ex-smokers 
 

The course of the costs and effects in the two 
models are very similar and no differences can be 
shown. But in the data are some small differences too, 
as for the division of the stages. The discounted values 
are more exactly than the undiscounted. 

The ICER of the Markov model averages 838.4912 
€/QUALY and the ICER of the SD model is 773.1253 
€/QUALY. Why there are again some differences 
between the models is not yet analysed, as well not if 
only the differences of the stages cause the differences 
in the costs and effects and the ICER. Several factors 
could cause these deviations. Among them are the fact 
that although the two models should lead to equal 
values of states and levels at the discrete time steps, the 
continuous model calculates costs and effects also 
between these time points (and here also the discounting 
factor can differ), rounding errors and procedural errors 
of the numerical solver in the continuous case. 

The following two graphics 9 and 10 show the 
division of the cohorts of smokers and ex-smokers in 
the expanded version of the SD model. It is easy to see 
that in the cohort of the ex-smokers are much more 
people than in the normal version and that they are 
coming from the cohort of the smokers. The people in 
“stage 1” of the ex-smokers increase very fast. After 
that, the course of the people through the stages is the 
same as in the normal version. In the cohort of the 
smokers “stage 1” shrinks in opposite to the ex-smokers 
and after the course is similar to the normal version. 

 

 
Figure 9: Division of the cohort into the stages – 
smokers – expanded System Dynamics model 

 

 
Figure 10: Division of the cohort into the stages – ex-
smokers – expanded System Dynamics model 
 
7. CONCLUSION 
The approach shows that each Markov model can 
theoretically be transformed into an analogue SD 
model. In our example we got results that were slightly 
different, especially for the calculated ICER. There are 
a few possible explanations for these deviations, but this 
issue needs further and more detailed analyses. 
Naturally, there exist differences between the two 
methods, especially when it comes to possible 
expansions. For some research questions in the area of 
health care the limitations of Markov models are not a 
problem. However, a transformation of an existing 
Markov model into an SD formulation could allow for 
the incorporation of further aspects and influences, as 
was demonstrated in the case of deterrence for smokers 
in mild COPD stages. 
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