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ABSTRACT 

Microelectronics and high level integration provide in 

combination with simulation and modeling of embed-

ded systems new approaches in biotechnology and 

medical therapy. The integration of intelligent systems 

as well as sensors and actors in an adaptive hard-

ware/software-platform increases flexibility and pro-

vides a scalable measurement and identification plat-

form. Based on modeling and simulation methods, dif-

ferent applications, like biosignal identification, pros-

thesis control and rehabilitation monitoring, offer com-

pletely new treatment and therapy options. In this paper 

we focus on the platform extensions of the modular 

biosignal acquisition and identification platform by 

using Internet-of-Things modules and introduce new 

applications for rehabilitation monitoring and evalua-

tion of motion sequences. 

 

Keywords: ENG-based prosthesis control, rehabilitation 

monitoring, system identification, system verification, 

simulation framework, simulation and modeling in 

computer aided therapy, robot-manipulators 

 

1. INTRODUCTION 

Embedded systems provide new approaches in biotech-

nology and medical therapy. Based on modeling and 

simulation methods, biological, physical and technical 

relationships can be described and verified (Kandel, 

Schwartz, and Jessell 2000), (Law and Kelton 2000), 

(Zeigler, Praehofer, and Kim 2000), (Klinger 2014). 

The integration of hardware- and software-components 

provides an intelligent, smart and application-specific 

system. Using a platform paradigm, the partitioning 

between hardware- and software-components is adapta-

ble concerning project-specific requirements. Further-

more the platform characteristic enables a modular ar-

chitecture with high-level flexibility. The integration of 

sensors and actors in this adaptive hardware/software-

platform increases flexibility and provides a measure-

ment and identification platform for lots of applications. 

In (Klinger and Klauke 2013), (Klinger 2014) and 

(Klinger 2015) we have presented a modular platform 

focused on the acquisition of electromyogram (EMG) 

and electroneurogram (ENG)-signals and a data-based 

identification approach. 

 

 
 

Figure 1: Block diagram of SMoBAICS 

  

In addition to a continuous improvement of the system 

core features (in particular the identification), we are 

working on new fields of application and an enhance-

ment concerning flexibility. In  

Figure 1 a block diagram of ram of the smart modular 

biosignal acquisition, identification and control system 

(SMoBAICS) is shown. 

 

The SMoBAICS-platform consists of several stages and 

modules, described in the following overview: 

 

A Data acquisition and stimulation 

 The ENG or EMG (ExG) data or further sensor 

data have to be acquired and sampled accord-

ing their signal characteristics. The number of 

channels has to be determined by the applica-

tion. In particular applications a stimulation is 

necessary, for example to trigger movements 

by activating muscle groups. 

B Data processing 

 Data processing focuses on two key priorities: 

Data conditioning and identification. 

B.1 Data Conditioning 

The acquired data have to be processed to 

improve the signal conditioning. Besides 

the programmable filters and amplifiers 

are resampling functions available to 

provide periodic samples. The acquired 

data (action potentials) are disturbed by 

intrinsic and a substantial extrinsic noise, 

originated for example by EMG from 

surrounding muscles. Therefore we have 

to condition the recorded data with inte-

grated analogue filters and additional 

digital filters. Several filters like specific 

high-pass, low-pass, band-pass and notch 
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filters are available. A further data 

processing is necessary to generate events 

from the action potentials like the activity 

level of a muscle group or the detection of 

an exposure scenario. 

B.2 Identification 

The identification feature is required for 

prosthesis control or any type of high level 

signal evaluation, like gait analysis. The 

identification is based on machine learning 

and recognizes different information 

sources: The action potentials from brain 

to muscle, the action potentials from the 

proprioceptors and additional sensor data 

from microelectromechanical system 

(MEMS) of force sensors. The identifica-

tion method and the corresponding verifi-

cation scenario have been introduced in 

(Klinger and Klauke 2013), (Klinger and 

Klauke 2015) based on results in (Bohl-

mann, Klinger, and Szczerbicka 2009), 

Bohlmann, Klinger, and Szczerbicka 

2010), (Bohlmann, Klinger, and Szczer-

bicka 2011), (Bohlmann, Klinger, and 

Szczerbicka 2012). The identification is 

subdivided into three levels. In the first 

level, the algorithm recognizes patterns of 

axon related action-potentials. This set of 

solutions is checked to well-known 

parameters, like impulse frequency, the 

relative magnitude of the nerve impulse 

amplitude and the refractory period. In 

addition clusters are build up to model the 

different groups of activation and their 

related sensory information (propriocep-

tors). So, certain clusters in the neural 

bundle can be arranged to map muscle 

groups and their corresponding receptors. 

In the second level the agent-based set of 

solutions is combined to global solutions 

taking the causality between actor and 

sensory information into account. The 

third level correlates the first and second 

level solutions with trajectory information 

from the camera-system or the MEMS, 

using inverse kinematic algorithms. 

C Data archiving 

A local data archive is necessary due to two 

scenarios, online and offline operation. 

C.1 Offline Operation 

For offline operation the identification 

needs sets of model parameters, data from 

the learning outcomes and RAM for 

algorithm execution. Furthermore all data 

can be logged on the system for a later 

offline analysis. During event recognition 

all data are logged, only event data, for 

example an exceeding of a maximal force, 

are sent to the host system. 

 

 
 

Figure 2: System Architecture 

 

C.2 Online Operation 

During online operation all local 

algorithms need memory for an efficient 

execution. This local memory reduces the 

requirements for data bandwidth to the 

host system. 

D Data exchange / Connectivity 

With regard to  

Figure 1, the processing of data goes in two 

different directions, either the local signal pro-

cessing (operating phase (Klinger and Klauke 

2013)) or the host processing (learning phase 

(Klinger and Klauke 2013)). Furthermore the 

data can be saved locally or on the host, trans-

ferred using the communication link (cable or 

wireless). 

E User interface 

The graphical user interface (GUI) allows 

access to the different system functions and 

presents either a configuration or a data dis-

play. 

F Configuration 

The system functions can be configured for 

different use cases and specific GUI. 

F.1 Learning 

The control application helps to adapt 

parameters and to initiate different learn-

ing phases. 

F.2 Operating 

The operating GUI allows to start and stop 

the application and to load specific param-

eters. 

F.3  Logging 

The logging collects not only events but 

all system data for a later offline analysis. 

F.4 Event 

The different events and their corre-

sponding limits have to be defined and 

selected. 

In Figure 2 the block diagram is transformed in the plat-

form layer, where the architecture and the functional 

system components are visualized. This figure shows 

the future design roadmap, where the key component is 

integrated into a system-in-package (SIP) to provide an 

implantable device. 

Furthermore this figure shows the wireless integration 

of the MEMS-device, which is a smart sensor providing 

the required connectivity shown in the block diagram 

(Figure 1). This wireless connection improves the flexi-

bility and simplifies the system integration. With regard 
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Table 1: Comparison of selected connection opportunities and 

ranking from the wireless point of view 

 
to the platform, the advantages (+) and disadvantages (-

) of this wireless connection type are opposed in Table 

1. Based on this comparison and with regard to platform 

paradigm, system flexibility and mobility, the wireless 

connection has been chosen for the integration of all 

external sensors into SMoBAICS. This decision opens 

the perspective of using Internet of Things (IoT)-mod-

ules which have the added benefit of the future availa-

bility of legio of IoT-sensors and actors. The internal 

sensors, like the cable wired cuff-electrode (Klinger and 

Klauke 2013), cannot be connected using wireless tech-

niques according to the current state of the art. 

 

2. IOT-BASED EXTENDED MODULAR 

SYSTEM ARCHITECTURE 

The Internet of Things creates new opportunities to link 

sensors, actuators or intelligent decentralized systems 

either with each other or with other systems (Bassi et al 

2013). The IoT-Roadmap promotes new technologies 

and, therefore, new challenges. Based thereon the avail-

ability of technologies and components offers good 

conditions for a platform-based system such as 

SMoBAICS. The extension or adaptation of the system 

may then, depending on the application, benefit from 

existing developments and/or modules. 

The SMoBAICS platform is used to acquire EMG- and 

ENG-signals and to provide a data-based identification 

of movements and trajectories. The identification 

method is model-based and uses simulation for the con-

tinuous model improvement and for verification pur-

poses. The data of the external sensors, here especially 

of the 9-axis tracking device, are essential for the 

model- and simulation-based identification method. 

First we introduce in the following with the general 

properties of these systems. Then we focus on a first 

own IoT-module for SMoBAICS that already uses 

components developed based on this new technology. 

 

2.1. IoT Characteristics 

An analysis of different use cases shows the need of an 

integration of additional sensors in the acquisition and 

identification platform. This includes the MEMS-

device, which is needed to provide motion data of the 

prosthesis. The connectivity is here one key factor. Lots 

of smart devices, like smart phones or tablets, provide a 

communication- and computing- infrastructure. Based 

on this the flexibility and scalability of the platform can 

be increased significantly. In addition the number of 

intelligent components rises within the scope of the IoT 

rapidly (Bassi et al. 2013). Thus intelligent sensors can 

be integrated to the platform. This decentralized periph-

ery extends the application spectrum of the platform 

considerably. Nevertheless, some key aspects have to be 

taken into consideration: 

 

 The core platform is an essential part. It ena-

bles an efficient and performant integration of 

different modules and provides smart services. 

 The modular character of hardware and soft-

ware and their platform characteristics is of 

particular relevance. The platform paradigm 

provides a flexible partitioning and relocation 

of functions and services on specific hardware 

and software modules. Especially the open 

system gateway initiative (OSGI) is one of the 

key features realizing the software platform. 

 Connecting more than one or two devices, the 

Smart- Device and/or the CPU-module of 

SMoBAICS has to provide gateway function-

ality. Based on new Bluetooth- (mesh) or 

WiFi- (802-11ah) standards, the communica-

tion environment with these characteristics can 

be realized. 

 The service orientation of the interface is an 

essential aspect due to the integration of IoT 

components. An efficient linking and commu-

nication require a defined quality-of-service 

level to realize a seamless integration of ser-

vices and modules. 

 Using IoT-modules security aspects are a fur-

ther key point. Without secure data transfer 

and a secure module interconnection an IoT-

based system is applicable in a limited way. 

Every connection has to be secured using 

pairing-based or certificate-based strategies. 

 

In Figure 3 the essential features of an IoT-device are 

depicted. The base functionality of an IoT-module con-

tains an actor/sensor element, and processing, memory 

and connectivity features, adapted to the specific appli-

cation. For example, the connectivity may be based 

upon a wireless or wired connection. Moreover, all 

modules are designed regarding low-power strategies 

providing an autonomously operation. Here, energy 

harvesting is one of the main future topics for IoT-

systems. 

 
 

Figure 3: Platform circle, covering the major system features 
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Figure 4: IoT instances based on an IoT-platform 

  

Figure 4 shows different specifications of IoT-systems 

designed for specific applications. For example 

processing features (above) or connectivity (below) are 

more pronounced than other features. Based on the 

platform paradigm every IoT-system can be designed 

according its specific project requirements. 

 

2.2. SMoBAICS IoT-Modul 

As described in (Klinger and Klauke 2013) and (Klinger 

2014) the SMoBAICS is a modular system for identifi-

cation and prosthesis control. Based on the acquisition 

of action potentials via ENG, the information of the 

peripheral nervous system is used to identify movement 

patterns. A MEMS (mobile phase (Klinger and Klauke 

2013) and/or camera system (learning phase (Klinger 

and Klauke 2013)) is necessary to get information about 

the movement trajectories. To integrate the MEMS, an 

IoT-module was designed to improve flexibility and to 

simplify the integration of the sensor using wireless 

connection. Figure 5 shows the block diagram of the 

SMoBAICS IoT-module. The first prototype with a 

rectangular base has the system dimensions shown in 

this figure. The design can be shrinked massively, due 

to design for test considerations we did not shrink the 

prototype further. It is realized according to the plat-

form paradigm and consists of a modular design. 

According to the platform circle, shown in Figure 3, all 

essential features are realized: 

 

 
 

Figure 5: SMoBAICS IoT system: Base System (Lower Board); 

Sensor Extension (Upper Board) 

 

 Controller 

ARM-based controller for data and event pro-

cessing, system control and analog-digital con-

version. 

 Connectivity 

In the current version Bluetooth is supported to 

provide a communication link to the body area 

network (BAN), connecting all devices of the 

platform. 

 Memory 

For logging and data buffering a SD-card is 

integrated. 

 Sensor 

The MEMS is an integral part of this IoT-

module because the acceleration and gyro data 

are for all relevant applications around this 

project important. To provide further sensor 

support an interface is designed to connect 

additional sensors to the IoT-system. This 

additional sensor system can be connected to 

the base system as shown in Figure 5. In 

subsection 3.2 we show a corresponding appli-

cation scenario using additional sensor support. 

 

The prototype attached button-cell battery provides 

enough energy to independently operate the IoT-device 

for several days. The intelligent power management 

helps to reduce power consumption according to the 

activity cycles. In Figure 6 activity cycles for different 

use cases are shown, ranging from training applications 

to different rehabilitation scenarios. The four operation 

modi are characterized by power consumption and 

wake-up capability: 

 Off 

The device is powered off, no power 

consumption. 

 Standby 

The device is in the lowest power consumption 

mode, waking up by interrupt of the MEMS-

device. 

 Activity 

Data acquisition is activated automatically 

from standby; depending on the communica-

tion status (logging, event mode, transmit con-

tinuously, transmit periodically) the power 

consumption differs considerably. 

 Training  

Data acquisition is activated manually and the 

communication mode is selectable according 

the activity mode. 

 

 
 

Figure 6: Application specific time-of-use: Day Schedule 
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Figure 7: Design overview of the current CPU-module 

 

In Figure 7 the current design of the CPU-module is 

shown. To realize the IoT-system according platform 

paradigm we have chosen the large CC2650-package 

providing more I/Os. Realizing a product-based design, 

the IoT-system can be shrinked considerably. 

 

3. APPLICATIONS 

A wide range of applications in the field of biosignal 

measurement, signal processing and biosignal monitor-

ing are existing. We focus on two specific examples, 

demonstrating the further development of the known 

platform (Klinger and Klauke 2015) and the flexibility 

of the platform paradigm. 

 

3.1. Prosthesis Control System and Gait Identifica-

tion 

Based on the idea of an ENG-based arm prosthesis 

control we are still working on the identification to 

improve the identification algorithms and to make it 

more robust. Using signals from the peripheral nervous 

system, the objective of a prosthesis control is adaptable 

to leg prosthesis, too. In Figure 8 the application sche-

matic is shown, consisting on the same elements like 

the system for the arm prosthesis control (Klinger and 

Klauke 2013). 

 

 
 

Figure 8: System overview 

 

 

 
 

Figure 9: Positions of the legs during a single gait cycle by the 

right leg (gray) (Levine, Richards, and Whittle 2012) 

 

According to this scenario we need to integrate a 

MEMS to get information about zero space movements 

during the operating phase (Klinger and Klauke 2013). 

This MEMS contains a 9-axis motion tracking device 

(gyro + accelerometer + compass). During the first 

identification runs it turned out, that the MEMS-signals 

are not sufficient to correlate with the information from 

the nervous system due to signal drift. So it was not 

possible to realize a gait identification which is neces-

sary to provide a leg prosthesis control. Therefore we 

add force sensors to the MEMS, called now MEMS+F. 

The design was made according to the description in 

section 2; the wireless integration of this so called smart 

sensor was realized according Figure 1 and Figure 2. 

Using force sensors, it is possible to get more precise 

information about the force progression over time and 

therefore about the gait cycle, shown in Figure 9. The 

gait cycle information and the force sensors are essen-

tial requirements for an identification process (Aziz, 

Park, Mori, and Robinovitch 2014), (Ito 2008), (Kugler 

et al. 2012), (Tao, Liu, Zheng, and Feng 2012). Fur-

thermore, the gait cycle information triggers another 

application, shown in the following subsection. 

 

 

3.2. Rehabilitation Monitoring System and Gait 

Evaluation  

Deploying the MEMS with additional force sensors 

(MEMS+F) there are a lot of rehabilitation monitoring 

systems and gait evaluation systems possible. 

 

 

 Rehabilitation Monitoring  

Using the MEMS+F device it is possible to 

measure, evaluate and archive all forces acting 

on the foot vertically (z). With additional sen-

sors, adaptable to the MEMS+F-device, it is 

possible to take the other forces (xy) and tor-
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ques into account. During a rehabilitation 

phase after a fracture, dislocation, etc. the 

physical stress can be observed continuously. 

Therefore a correlation between stress type, 

stress duration and recovery progress is possi-

ble. In addition the accumulated load per time 

period can be taken into account. Furthermore 

the monitoring can be used to optimize the gait 

during rehabilitation to realize a normal gait. If 

the specific permitted limits are exceeded, an 

event can be triggered, informing the patient or 

the treating physician to take the situation into 

consideration. 

 Gait Monitoring 

The evaluation of gait of apparently healthy 

persons is an important method to analyze an 

imbalance or dysfunction which can result in 

health problems. These problems can be evalu-

ated using a continuous gait monitoring to 

identify pathological or abnormal gaits. Paying 

attention to how you walk and run reduces 

unnecessary muscle strain. In addition this gait 

monitoring can be used to monitor and opti-

mize movement sequences within the sports 

segment. 

 

 

4. RESULTS 

In this section we focus on the first measurements taken 

by the new SMoBAICS IoT-device. This device is nec-

essary for all applications and use cases with identifica-

tion to provide a positioning information. Both applica-

tions in section 3 are using this device as MEMS+F-

device. Focusing on the second use case in subsec-

tion 3.2, the whole system can be downsized with 

regard to the platform paradigm. In Figure 10 a small 

cutout of the block diagram in Figure 1 is shown, 

emphasizing an additional direct connection between 

the smart sensor MEMS+F and the smart device used in 

this class of application. In addition to the 9-axis motion 

tracking device, the prototype is using currently three 

force sensors to provide a mobile measurement of 

forces as well of accelerations and gyro data according 

a gait evaluation. The current resolution of the analog 

digital converter (ADC) is 12 bit at a sampling rate of 

10 kHz for all force, acceleration and gyro data. These 

parameters are adequate to detect all effects with 

sufficiently accuracy. 

 

 
 

Figure 10: Direct connection from the MEMS+F-device to the 

smart device 

 

 
 

Figure 11: Sole configuration with 3 sensors for vertical force 

 

The position of the three force sensors, used by the 

current prototype, are depicted in Figure 11. The force 

sensors extend the information from acceleration and 

gyro data to identify the center of gravity and to 

determine the different phases of the gait cycle (see 

Figure 9). In contrast to fixed installed measurement 

plate (Heidenfelder 2011), providing a one dimensional 

data stream for the vertical force, the mobile MEMS+F-

device supports in the current version three force 

sensors as shown in Figure 11. Figure 12 shows this one 

dimensional data stream for the vertical force during 

two steps (Fzl: Left leg; Fzr: Right leg). Using three 

force sensors a far more detailed force level and force 

progression can be detected. In Figure 13 to Figure 16 

the load distribution for the sensors 1 (red), 2 (green) to 

3 (blue) (see Figure 11) for different scenarios, like 

step, run, jump and changes in balance are shown. 

 

 Figure 13: Normal gait 

According the gait cycle the different force 

levels and the force progression for all force 

sensors over time are shown with regard to one 

step. From the initial contact on the heel up to 

the push off, the force levels for all ensors are 

available over time. 

 Figure 14: Running 

In comparison to the gait, here the shorter and 

more intensive force level, dependent on the 

way of running, is shown over time. 

 Figure 15: Jumping 

All phases of the jump including the short 

flight (forces=0) between 930 ms and 1110 ms 

are evident. 

 Figure 16: Standing with changes in balance 

At first the posture is inclined slightly to the 

front moving to posture which is inclined 

slightly to the back. 

 
Figure 12: Normal gait: Vertical Force plotted over time on a 

fixed installed measurement plate (Fzl: Left leg; Fzr: Right leg) 
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Figure 13: Normal gait: Vertical Force plotted over time on a 

fixed installed measurement plate (Fzl: Left leg; Fzr: Right leg) 

 

 
 

Figure 14: Normal gait: Vertical Force plotted over time on a 

fixed installed measurement plate (Fzl: Left leg; Fzr: Right leg) 

 

 
 

Figure 15: Normal gait: Vertical Force plotted over time on a 

fixed installed measurement plate (Fzl: Left leg; Fzr: Right leg) 

 

 

 
Figure 16: Standing with changes in balance, right leg: Vertical 

Force plotted over time for 3 sensors (1 (red), 2 (green), 3 (blue), 

sum(1,2,3) (magenta), see Figure 11) 

 

5. SUMMARY AND FURTHER WORK 

The presented approach for a platform-based embedded 

biosignal acquisition and identification system offers a 

wide range of medical applications. The modular sys-

tem character based on the platform paradigm provides 

adaptability to different diagnostic, rehabilitation mon-

itoring and control scenarios with regard to computing 

power, connectivity and analog frontend characteristics. 

The embedded EMG- and ENG-based biosignal data 

acquisition and identification system, using a flexible 

hardware and software-platform, offers considerable 

potential. Additional tests and clinical applications are 

ongoing to improve the system characteristics and the 

identification method further. 

The use of monitoring platforms based on platform 

architectures allows flexibly tuning the system to differ-

ent application scenarios. The additional integration of 

IoT systems further expands the range of applications 

and allows the correlation of data and thus the sensor 

fusion and context recognition. The new IoT-device, 

also designed according the platform paradigm, helps to 

acquire missing data, like MEMS- and force data for 

identification, and provides a smart integration into the 

platform using wireless links. Based on the developed 

IoT-device new applications are constantly emerging, 

like rehabilitation monitoring, gait evaluation and 

training-based motion sequence optimization. 

 

The current research and development activities have a 

dual focus: On the one hand the further development 

and verification of identification algorithms and the 

integration of MEMS- and force data, on the other hand 

the deployment of a software framework for monitoring 

applications. 
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