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ABSTRACT 

Recent developments of 3D computer technology, as 

computer graphics, haptic interaction, and 3D rapid 

prototyping, show promising potential for accurate, 

patient specific surgical planning. Traumatic surgery 

may potentially benefit from novel 3D technologies, 

both in the context of diagnosis and surgical planning. 

An inevitable prerequisite is accurate morphological 

segmentation, especially in trauma surgery, where all 

bone fragments, after a traumatic impact are mostly not 

clearly distinguishable using common segmentation 

techniques. A novel method is presented for the 

separation of these fragment clusters; the concept of 

adaptive surfaces. A flexible grid of control points is 

subject to motion, controlled by internal and external 

attracting forces to assess the outer surface of the bone, 

applicable for both joints and fractures. Internal forces 

control the stiffness of the surface and external forces 

act between the lattice and the landmarks on the bone 

surface, represented by principal gradient magnitudes. 

The algorithm yields proper classification of fracture 

parts and was successfully tested with geometrical 

phantom data and CT patient data from a heel bone 

fracture. 

   

Keywords: segmentation, active contours, surgical 

planning 

 

1. INTRODUCTION 

The reconstruction of traumatic fractures is amongst the 

most challenging tasks in surgery. The number of bone 

fragments, the disorder caused by the impact, where the 

parts may be substantially displaced, rotated and even 

stuffed into each other, need certain experience from the 

surgeon, as well as a high degree of spatial sense 

combined with a survey over the surgical situs. 

Modern medical imaging devices, e.g. multi-slice CT, 

provide high resolution 3D image data, allowing 

accurate diagnosis and staging of the severity of injury. 

Though there exists a broad spectrum of 3D 

visualization methods, the systems allowing for 

manipulation and rearrangement of bone fractures are 

limited. 

The complexity of bone traumata, e.g. fractures of the 

ankle joint, make it sometimes difficult to reconstruct 

the original state of morphology and function. Besides 

these constraints surgery is always a kind of stress 

situation, requiring distinct decisions in a very narrow 

temporal slot. Tools for careful identification, 

repositioning and fixation of bone fragments prior to 

surgery are desirable and will fit into surgical planning 

systems (Gorres et al. 2016). 

In this work an adaptive surface model is developed to 

enable the separation of bone fragments after rough pre 

segmentation by robust methods as thresholding and 

region growing. The concept of the developed method 

is in the category of algorithms as evolving or self-

adaptive contours, implementing various physical 

concepts: the propagation of wave fronts (Osher and 

Sethian 1988), snakes, active contours, and level sets 

(Bookstein 1996, Wang et al. 1996, Zhu and Yan 1997). 

The novel segmentation technique is the base for a 

planning system, comprising general methods for 

morphological modelling using robust algorithms with 

little user interaction. The object models are supplied to 

a manipulation tool, allowing for easy replacement of 

bone fragments and planning the position of bone 

plates, screws, and nails. 

   

2. METHODS 

The method is applied to a show case of standard CT 

data taken from a heel bone fracture. Data is acquired 

on a multi-slice CT, the volume consists of slices with 

512x512 pixels, pixel-size 0.72mm x 0.72mm and 

0.5mm slice thickness. The number of slices ranges 

with these type of studies from 300 to 500, thus defines 

the depth of the volume of interest. Voxel data is 

represented in Hounsfield units (HU) with 16 bit/voxel.  

 

2.1. Data preprocessing 

Image data are reformatted to isotropic voxel-size, i.e. 

the slice thickness of 0.5mm.  Scaling data up in-plane 

sampling distance is reduced from 0.72mm to 0.5mm, 

increasing the amount of data roughly by 40%. Cubic 

spline interpolation is used to calculate the isotropically 

resampled image data. For display voxel intensities are 
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rescaled to provide optimal contrast in the bone-

window. Bone density shows a wide range of variation, 

ranging from hard cortical bone (HU=2000) to weakly 

absorbing spongy bone (HU=300). 

A strong prerequisite for generation of accurate models 

is proper segmentation of all relevant parts. This is 

challenging, since the wide dynamic range of bone 

tissue in CT images and the irregular pattern of bone 

ruptures. The distinction of fragments is complicated by 

strain of parts into each other.  

An edge preserving smoothing filter is applied to flatten 

intensity variations of image data in order to prepare for 

segmentation. A locally variant Gaussian shaped linear 

filter is applied to image data. The filter mask is derived 

from local gradient magnitude inversely weighted by an 

edge constant (Li et al. 2009). 

 

2.2. Segmentation 

The segmentation is a field of intensive research in 

medical image processing, where several approaches 

employing sophisticated mathematical and statistical 

method were developed (Nascimento and Marques 

2005, Liang et al. 2006). Various frameworks are 

developed for segmentation of abdominal organs (Boes 

et al. 1994, Campadelli et al. 2010, Muralidhar et al. 

2010). In this work a processing pipeline for 

segmentation of bones, i.e. a semi-automatic 

classification process under user supervision, is 

developed, under the constraint of minimal user 

interaction. It is a hierarchical two-steps process.  The 

first step aims into rough segmentation of all bones 

contained in the volume of interest (VOI), it is 

important to identify all bones in the VOI since they 

build the base for further refinement to achieve final 

proper segmentation.  For this initial segmentation 

thresholding is applied. The proper threshold values, to 

distinguish bone from surrounding tissue, are estimated 

using the optimum thresholding algorithm (Vala and 

Baxi 2013). The method achieves a large set of voxels 

representing the main bone morphology, but with no 

classification of single bones, and traumatic fragments. 

This classification is implemented as supervised process 

with user intervention. The mainly grouped pixel-sets 

are segmented by seeded region growing. The seed-

points are defined manually and the subsequent growing 

algorithm is realized in 3D. The identification of major 

well manifested bones is achieved, but a big number of 

smaller bones are tied together. This is sufficient for all 

bones not affected by the traumatic event, but to allow 

careful modelling and surgery planning further, detailed 

segmentation of the focused fragments is needed. 

 

2.3. Active grid  

In many cases the methods described above are not 

sufficient to achieve object classification of a trauma 

situs to allow accurate surgical planning. The broken 

and splintered fragments are partially wedged into each 

other, or not clearly separated in images, thus clusters of 

fragments are falsely identify as a single object. Further 

thresholding or methods from mathematical 

morphology are not appropriate to achieve final results, 

thus a novel method, relying on physical principles is 

developed to isolate the parts by building 

compartments. 

 

 
 

Figure 1: Sketch of the adaptive grid. 

 

An adaptive surface is positioned interactively between 

the fragments. Starting from this initial position the 

surface is adapted to the shape of the fragments driven 

by external and internal forces. The external forces 

attract the surface to the external boundaries of the 

object; the internal forces control the smoothness of the 

surface. The active surface is assembled by four-sided 

patches, cf. Figure 1.  Motion and deformation of the 

surface is controlled by the vertices of the patches. They 

are arranged on a lattice and joint to each other by 

springs, controlling the stiffness of the surface. External 

forces also affect these points, enabling the adaption to 

morphology.  The kind of external force influences 

convergence and roughness of segmentation, possible 

choices are: 

 spring like linear force, 

 1/𝑟2 force like gravity, 

 constant force to simulate convection. 

Motion is calculated for all mass points during iterative 

steps. In small time intervals Δt the motion of all grid-

points is calculated along the resulting force, 

corresponding to the equation of motion 

 

𝑚�̈⃗� = ∑ 𝐶𝑖

𝑁

𝑖=1

(‖𝑑𝑖
⃗⃗⃗⃗ ‖ − 𝑙0𝑖)

𝑑𝑖
⃗⃗⃗⃗

‖𝑑𝑖
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+ 𝐹𝑒𝑥𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     .                   (1) 

 

The above equation describes the motion of a mass 

point, accordingly the resulting forces. Acceleration a is 

the second temporal derivate of the position vector �⃗�, 

the sum describes the  forces generated by the springs, 

N is the number of adjacent mass points, 𝐶𝑖 is the spring 

constant of the respective conjunction, and 𝑙0𝑖  is the 

length of the i-th spring in resting state. The vector 𝑑𝑖
⃗⃗⃗⃗  is 

the distance vector to the neighboring mass point.  The 

external force 𝐹𝑒𝑥𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is chosen in this work as gravity like 

force of the form 

𝐹𝑒𝑥𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = ∑ 𝐺

𝑀𝑗𝑚
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  .                                            (2) 
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It sums up the attraction forces of all surface bound  

mass points  𝑀𝑗 of interest, i.e. morphological 

landmarks, where 𝑟�⃗⃗⃗� is the distance vector from the 

actual grid point to these morphological landmarks. The 

constant G and the fictive masses 𝑀𝑗 allow the fine 

tuning of the algorithm. Since this type of external force 

reaches infinity when the distance approaches zero, a 

limit corresponding to a minimal distance  𝑟𝑚𝑖𝑛  is 

defined, to avoid accidental sticking of the surface at 

some random landmarks, especially when the separation 

of two parts is desired and the surface has to fit into a 

small gap.  

The morphological landmarks are generated by 

calculating the magnitude of gradients. To restrict the 

landmarks to points of the surface, thresholding is 

performed and the number of landmarks is reduced. The 

magnitude of the gradient is a guess for the mass of the 

landmark.   

Calculating the evolution of the lattice is a very 

complex multi object problem, but the observation of 

small time intervals allow the linearization of the 

problem and thus decoupling of the multi body system. 

During a single iteration the trajectory of a grid point 

along its resulting acceleration vector is calculated. The 

iteration is completed when all grid points have been 

considered. This simplification allows easy computation 

but yields very realistic motion behavior.  

For special purposes, e.g. the separation of loosely 

connected bone particles, selected grid points may be 

defined as static. This means, they remain at their initial 

positions; usually the outer borders of the lattice are 

defined static, building a stationary frame for the 

evolving surface. But also some arbitrary point of the 

lattice may be fixed to the bone surface, i.e. some kind 

of pretension of the surface, to further accelerate the 

evolution to the final segmentation form.  

 

 
 
Figure 2: Volume rendering of the ellipsoid phantom data set. The 

green, red and yellow frames indicate the axial, coronal and sagittal 
cutting planes. 

 

3. RESULTS 

The active grid concept is demonstrated with simulated 

phantom data and a showcase of clinical data, the 

comminuted fraction of a heel bone. 

 

3.1. Phantom data 

Phantom data represent a homogeneous ellipsoid 

positioned at the center of a 128x128x80 image volume 

of isotropic voxels. The lengths of half axis are 40, 20, 

and 20 pixels. A volume rendering of the data set is 

shown in Figure 2.  

Landmark points upon the surface are calculated using 

an unsharpen enhance filter. To speed up calculation 

and to easily exclude distant points, further than a 

certain threshold, a potential map is generated, based on 

the surface landmarks. In this case the potential field is 

calibrated to zero at the landmarks and a simple 

Euclidean distance field is applied.  The three major 

cutting planes through the center of the potential field 

are displayed in Figure 3. 

 
Figure 3: Potential field of the ellipsoid’s surface landmarks. A 
simple Euclidean distance metrics is implemented. The field values 

are limited to 45.   

 

A grid with 11x11 equally spaced control points is 

positioned in coronal orientation cutting the first quarter 

of the long axis of the ellipsoid. The four corner points 

of the grid are defined static.  In Figure 4.a the grid is 

depicted, superposed to a transparent axial plane 

through the center of the ellipsoid. The opacity value of 

the plane is 0.7. After an evolution of 1000 iterations 

along the negative gradients of the potential field, the 

deformed plane yields its final shape. It is positioned 

exactly on the border landmarks of the ellipsis, cf. 

Figure 4.b.  

 

 
(a) (b) 

 
Figure 4: Evolution of the grid. A grid with 11x11 control points, 

fixed at the four corners, evolves 1000 steps along the descending 

gradient of the potential field. The initial position (a) and the final 
position (b) are depicted. 
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3.2. Patient data 

Real patient data, as acquired prior to surgery, are 

usually contaminated with modality inherent noise. 

Noise reduction and emphasis of edges in image data 

facilitate successful segmentation with the evolving 

surface algorithm.  During the first processing step 

image data is smoothed. The effect of the edge 

preserving adaptive filter is shown in Figure 5, with 

different settings of the edge parameter and the mask 

size. The native image is shown in Figure 5.a, the slice 

is slightly below the ankle, and thus the metatarsal 

bones are shown on top, followed by the tarsal bones 

and finally the fractured calcaneus (heel bone).  The 

images (b) and (c) are calculated with mask size 3x3 

and 10% and 40% of maximal gradient magnitude. The 

results with mask size 5x5 and 10% magnitude scaling 

are shown on the right in sub-image (d). 

 

 
Figure 5: Edge preserving smoothing with different parameter 

settings for mask size and edge strength. 

 

The results of the pre-segmentation step are shown in 

Figure 6. A simple thresholding followed by a seeded 

region growing is performed. The method is sufficient 

for accurate separation of soft tissue and bones, but 

classification of all bones as separable objects, as 

required by a planning system, is not achievable.  

 
Figure 6: Results of pre-segmentation 

 

The potential field yielded from the surface of the pre-

segmented volume is shown in Figure 7, three 

perpendicular representative slices through the image 

volume are displayed. 

The active grid approach, based on the primary 

segmentation, keeps the chosen thresholds. Increasing 

thresholds are in most cases along with the erosion of 

substantial parts of bone morphology, not tolerable with 

accurate reconstruction of the injured extremity. The 

feasibility for the active grid segmentation approach is 

demonstrated with tarsal bones and the upper ankle 

joint. The position of the initial 15x15 grid is shown in 

Figure 8.a on top of two transparent perpendicular 

slices, with opacity value 0.7. It is manually localized 

by defining the four vertices. In its initial position it 

traverses the ankle bone (talus), thus only the uncovered 

edges are clearly visible. The final surface is shown 

after 1000 iterations with a time increment of 0.2s, cf. 

Figure 8.b. It fits exactly into the joint gap and  

 

 
Figure 7: Potential field of the landmarks at the bone surfaces of the 

CT examination of the heel bone fracture. 

 

facilitates easy separation of the talus and the shinbone 

(tibia). The applicability of the method is also 

demonstrated with smaller joints in the tarsal area. The 

position of the manually defined, initial 11x11 lattice is 

shown in Figure 9.a. The result after 1000 iterations 

merely fits to the shape of the tarsal bone and defines a 

distinct border for separation of both parts, cf. Figure 

9.b. 
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(a) 

 
(b) 

Figure 8: Segmentation of tibia and talus with the active grid 

approach. The lattice is drawn red at its initial position (a) and after 
1000 iterations it fits perfectly into the gap between the bones (b). The 

grid is drawn over two perpendicular cutting planes, with an alpha 

value of 0.7. 
 

 
(a) 

 
(b) 

Figure 9: Separation of tarsal bones. A 10x10 lattice (red) at the 
initial position (a) and after 1000 iterations with time constant 0.2s it 

perfectly masks the joint surface (b).  

 

The final result of segmentation achieved with the 

adaptive surface algorithm is depicted in Figure 10. The 

mainly linked bone morphology, obtained by pre-

segmentation with thresholding and region growing is 

further separated in detail, employing the adaptive 

surface method. The colored segments are shown in 

Figure 10, the heel bone is represented in olive color, 

the fragments of the heel bone are colored blue and 

turquoise, the broken and displaces tarsal bone is shown 

in red. The bone is rotated in such a way that the joint 

surface is oriented backwards.   

 

 
 

Figure 10: Final result of adaptive surface segmentation 

 

4. DISCUSSION 

A novel segmentation algorithm employing an active 

layer for proper separation of pre-segmented bone 

fragment is presented. The algorithm is integrated into a 

pipeline of sophisticated image processing steps, 

facilitating accurate 3D surgical planning. The 

algorithm is mainly designed to separate agglomerated 

bones from each other, after a rough pre-segmentation 

step. It differs from existing approaches like active 

contours or snakes, since the internal forces operating 

on grid nodes are solely attracting forces. They provide 

no stiffness to the evolving surface, thus a close 

approximation to the given surface is possible. The 

adaption to the surface is mainly achieved by the 

external forces. This composition has certain potential 

to remove random outliers from the resulting segmented 

parts. Furthermore this design of internal forces is 

suitable to fit into small joint spaces, the approximation 

is only controlled by the adjacent joint surfaces and the 

internal forces just act as shear forces to optimize the 

energy within the grid.  

In further work the influence of weighting the surface 

landmarks with scene dependent point loads and the 

choice of other potential functions on the convergence 

of the method will be investigated.  
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