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ABSTRACT 

This paper presents an optimisation-simulation approach 

for the design and operation of an Urgent Care facility. 

The Urgent Care Centre (UCC) could be an answer to 

decrease overcrowding in Emergency Departments, 

which is a common problem around the World. Despite 

Urgent Care Centres being widely used in Anglo-Saxon 

countries they are almost inexistent in the majority of Eu-

rope. A proper design of the UCC will increase its 

chances of doing well. This problem is focusing on the 

daily operation of unscheduled primary care needs that 

take place in an Urgent Care Centre. Unfortunately there 

are no tools for the design and operation of the UCC in 

the literature. The purpose of this work is to develop an 

optimization-simulation approach for the design and 

analysis of a new UCC facility that operates under certain 

uncertain conditions. 

 

Keywords: simulation-optimisation under uncertainty, 

health-care system, rolling horizon technique. 

 

1. INTRODUCTION 

Urgent care Centres play a key role in Anglo-Saxon 

countries but they are inexistent in others parts of world 

such as European countries. Urgent Care Centres are a 

great option for minor illnesses and injuries that are ur-

gent but not life-threatening. Those non-life-threatening 

injuries and illnesses put extra pressure on the ED (Emer-

gency Department) in central Hospitals. 

This extra pressure may create some problems, increas-

ing the possibility of misdiagnoses which threaten pa-

tient’s lives, and also increasing the patient’s waiting 

time, which affect directly in the cost of the service, re-

gardless of whether the cost will be paid by the govern-

ment, patient or by an insurance company. 

The overcrowding of European EDs has been increasing 

over recent years (Sánchez et al., 2013). Richardson 

(2006) studied that quantifies the effect in the dysfunc-

tion in EDs caused by the overcrowding associated with 

longer waiting times, delays in admission and even the 

increase of risk of infectious disease. The magnitude of 

the effect in 10 day mortality in an Australian hospital 

was about 13 deaths per year.   

From the economic point of view this overcrowding in 

EDs could be beneficial for private hospitals. But from a 

holistic perspective this multifactorial problem resulted 

in increased waiting times, decreased patient satisfaction 

and had a deleterious domino effect on the entire hospital 

operation. In Europe unlike the US, healthcare is viewed 

as a utility for everyone. All European countries have a 

legal framework for healthcare delivery for the general 

population, and so the implementation of a solution like 

US could be seen as governmental policy (Jayaprakash 

et al., 2009). 

Despite it not being possible to extrapolate these results 

to calculate the deaths that are caused in Europe because 

of overcrowded EDs, it is clear that it is necessary to look 

for solutions to decrease the pressure on the ED. 

One possible solution that is highlighted by researchers 

and practitioners such as Derlet and Richards (2000) and 

Borkowski (2012) is the use of more Urgent Care Centres 

to relieve the pressure on EDs. 

The Urgent Care Centres are focusing on the delivery of 

ambulatory care in a dedicated facility outside the tradi-

tional EDs. 

When patient populations were seeking care for non-life-

threatening conditions 60% of them felt that the ED was 

the best place for them to receive care for their medical 

problem, thereby creating an inefficient use of expensive 

resources (Burnett and Grover, 1996.) The authors hy-

pothesise that being unfamiliar with alternative care op-

tions and negative opinions about the alternatives were 

some of the main reasons.   

The projected attention time is a major decision factor for 

the choice of Urgent Care Centres, since if you are going 

to wait the same time patients prefer to go to the ED. For 

example Tallahassee Memorial Healthcare offers their 

patients a guarantee to be seen by a nurse practitioner, 

physician’s assistant or a physician within 15 minutes or 

they will be compensated with two cinema tickets. 

Despite the fact that the majority of Urgent Care Centres 

do not offer free tickets for patients that stay more than 

15 minutes, they do not let patients leave without being 

seen (LWBS). The time that a patient is willing to wait 

before leaving varies according to the type of illness or 

condition. 

The design of an Urgent Care Centre is a complex task 

where we have to minimize the cost of the proposed fa-

cility in terms of the number of exam and procedure 

rooms, and staffing while maintaining a reasonable fig-

ure for patients that leave without being seeing. 

To the authors’ knowledge there are no Urgent Care Cen-

tre design models in the literature, so we will bring some 

ideas from the hospital design and emergency care design 
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literature. Baesler et al., 2003 used simulation to estimate 

the capacity of the EDs. Li and Benton (2003) presented 

research for management and quality control in the de-

sign, and Gallivan et al., 2002 made a mathematical 

model study to calculate the length of stay of the patients 

to investigate the capacity needed. 

These kinds of problems are purely stochastic since the 

arrival of the patients, the type of disease of the patients, 

the leave-time without being seen and the duration of the 

medical treatments is not deterministic. Tackling all the 

stochastic variables in a mathematical model causes the 

size of the model grows to an extent that it is impossible 

to solve with current optimization tools. 

Thus, discrete-event simulation emerges as an alternative 

solution technique for the decision makers to provide 

good-quality results with reasonable computational ef-

fort. The potential of discrete-event simulation for “as-

is” analysis has been successfully demonstrated in Con-

nelly and Bair (2004), to study average patient service 

times in EDs. Other studies have focused to analyse 

whether or not is able to handle a greater flow of incom-

ing patients, as well as the related impact in their effi-

ciency (Longo et al., 2014). 

Despite the similarity in the design of health care facili-

ties, especially between UCC and ED, is that UCC help 

fill a vital gap when you become sick or injured, but your 

regular doctor is not available and you cannot wait for an 

appointment. Then we can focus on the efficiency but we 

can allow certain number of patients to leave without be-

ing see, which is impossible in ED. Also UCC are differ-

ent to regular medical centre because the main attention 

is not based on appointments. Moreover the majority of 

the approaches in the literature are more focus in the op-

eration and not in the design of the facilities, using the 

simulation to make a daily solution.  

In the last 10 years, many applications were developed 

using simulation techniques and also heuristic and me-

taheuristic approaches, to deal with the scheduling of pa-

tients in EDs. (see Azadeh et al., 2014). Many of these 

applications provide exact models, generally MILP mod-

els, which also represent the behaviour of the system with 

some simplifications. This kind of MILP models became 

easily unsolvable with the number of patient’s treat-

ments, that is why are commonly combined with decom-

position or iterative algorithms to be solved in a reason-

able CPU time.  

Another important lack of exact models, in comparison 

with simulation approaches, relies on the stochastic be-

haviour of the system. For example, two-stage or multi-

stage solution approaches can be developed for stochas-

tic optimization using a scenario-based representation, 

but the number of scenarios to be considered should be 

reduced in order to deal with the problem in short CPU 

time. 

In this paper we propose an optimisation-based simula-

tion approach for the design and operation of an UCC. 

The proper interaction between an exact MILP and dis-

crete-event simulation model allows us to solve this com-

plex stochastic problem in a reasonable CPU time, ob-

taining important improvements at the design and opera-

tion costs of the UCC. In order to demonstrate the effec-

tiveness of the solution approach, different scenarios 

were solved by considering a specific case study de-

signed for this problem. 

 

2. PROBLEM DESCRIPTION 

The role of the Urgent Care Centres (UCC) in the health 

system is to attend to unscheduled primary care needs. 

This situation occurs when a patient cannot wait days or 

weeks for an appointment, or when they need treatment 

for injuries that require immediate Lab testing, X-ray or 

imaging to evaluate the severity of the injury. All the pa-

tients that cannot be attended to by the Urgent Care Cen-

tres should be forwarded to the Hospital. The UCCs 

mainly help the hospital ED by referring non-emergency 

patients to a more appropriate care setting. 

The UCC works 7 days a week from 7 am to 9 pm. But 

they have to remain open until the last patients leave the 

centre. However, not all the staff need to remain but only 

those required finishing the patient’s treatment. The staff 

required to operate the UCC are a Receptionist, Nurses, 

a General Physician, an Imaging Technician, Orthopae-

dic Physicians, Orthopaedic Technicians, and the Physi-

cian’s Assistants. 

The UCC is comprised of a registration area, waiting 

room, triage area and rooms that can be used for exami-

nations and procedures (see Figure 1). For a matter of 

simplicity the UCC will attend to nine types of patients. 

The first type (mild sickness) does not require lab testing 

for treatment and could be attended to by a Physician’s 

Assistant. The second one (standard sickness) requires 

lab testing and has to be seen by a Physician. The third 

type (orthopaedic injuries) requires setting and casting of 

the bone. The fourth type of patient is orthopaedic injury 

not requiring setting/casting. The fifth one is lacerations 

requiring stitches. The sixth type is minor cuts/bruises 

not requiring stitches. The next two types of patients are 

standard check-up/examinations such as physicals, flu 

shots, etc., and cardio problems such as mild strokes and 

irregular/rapid heartbeats. The ninth type is those requir-

ing advanced emergency care who are immediately sent 

by ambulance to the emergency department. 

Tables 1-9 summarize the flow for each of the nine pa-

tient types. Each treatment requires different professional 

staff and depending on the equipment needed the proce-

dures could be done in a Procedure Room, not in an 

Exam Room. 

 

 
Figure 1: Flow process scheme of a UCC. 

 

Table 1. Mild Sick 
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Step Location Resource Processing Time 

1 Registration Receptionist Triangular(1.5,3,7) 

2 Triage Area Nurse Normal(2,.3) 

3 Exam Room 
Physician Assis-
tant 

Uniform(13,16) 

4 Registration Receptionist Triangular(3,4,5) 

 

Table 2. Sick 
Step Location Resource Processing Time 

1 Registration  Receptionist Triangular(1.5,3,7) 

2 Triage Area Nurse Normal(2,.3) 

3 Exam Room Physician Uniform(15,21) 

4 Exam Room Nurse 2 

5 Registration  Receptionist Triangular(3,4,5) 

 

Table 3. Orthopaedic injury requiring Setting/Casting 
Step Location Resource Processing Time 

1 Registration  Receptionist Triangular(1.5,3,7) 

2 Triage Area Nurse Normal (5,1) 

3 Procedure Room Imaging  
Technician 

Uniform(10,16) 

4 Procedure Room Orthopaedic  
Physician 

Triangular(9,10,15) 

5 Procedure Room Orthopaedic  
Technician 

Triangular(10,15,20) 

6 Registration  Receptionist Triangular(3,4,5) 

 

Table 4. Orthopaedic injury not requiring setting/casting 
Step Location Resources Processing Time 

1 Registration  Receptionist Triangular(1.5,3,7) 

2 Triage Area Nurse Normal (5,1) 

3 Procedure 
Room 

Imaging  
Technician 

Uniform(10,16) 

4 Procedure 
Room 

Orthopaedic  
Physician 

Triangular(18,20,22) 

5 Registration Receptionist Triangular(3,4,5) 

 

Table 5. Lacerations requiring Stitches 
Step Location Resource Processing Time 

1 Registration  Receptionist Triangu-
lar(1.5,3,7) 

2 Triage Area Nurse Normal (5,1) 

3 Procedure 
Room 

Physician Assis-
tant 

Normal(25,3) 

4 Registration  Receptionist Triangular(3,4,5) 

 

Table 6. Minor cuts/bruises 
Step Location Resource Processing Time 

1 Registration  Receptionist Triangular(1.5,3,7) 

2 Triage Area Nurse Normal (4,.5) 

3 Exam Room Physician Assistant Normal(15,2) 

4 Registration  Receptionist Triangular(3,4,5) 

 

Table 7. Standard Treatments 
Step Location Resource Processing Time 

1 Registration  Receptionist Triangu-
lar(1.5,3,7) 

2 Exam Room Physician Assistant Normal(15,3) 

3 Registration  Receptionist Triangular(3,4,5) 

 

Table 8. Cardio Problems 
Step Location Resource Processing Time 

1 Registration  Receptionist Triangular(1.5,3,7) 

2 Triage Area Nurse Normal (5,1) 

3 Procedure Room Physician Uniform(23,25) 

4 Procedure Room  Uniform(45,60) 

5 Registration Area Receptionist Triangular(3,4,5) 

 

Table 9. Advanced Emergency Care 
Step Location Resource Processing Time 

1 Registration  Receptionist Triangular(1.5,3,7) 

2 Triage Area Nurse, Physi-
cian 

Normal(5,1) 

3 Triage Area Ambulance  

 

Once the patients arrive they have to go to the registration 

area, and then all but those receiving standard check-ups 

are triaged by a nurse and in the event of an emergency a 

physician will attend. All the movement between the dif-

ferent areas will be performed by the Nurse. 

The patients will leave without being seen (LWBS) after 

a time that will be measured between the period that the 

patient enters the registration and until they enter an 

Exam or Procedure room. In Table 10 the percentage by 

type of patient and the LWBS is displayed. 

Table 11 shows the arrival rate of patients. Despite the 

arrival of new patients and closing at 9pm, it remains 

open until all the patients leave the facility. Then, it 

maybe makes sense to schedule staff to stay after the 

closing time. If a care–provider is required to stay over-

time they will receive a 50% premium over the price. 

 

Table 10. Patient type 
Patient Type Mix LWBS 

Mild Sickness 11 Uniform(15,35) 

Standard Sickness 32 Uniform(25,40) 

1st Injuries Ortho-setting/casting 7 Uniform(30,40) 

2nd Injuries Ortho- Non setting/casting 5 Uniform(30,40) 

3rd Injuries - Laceration 13 Uniform(25,35) 

4th Injuries – Minor Cut Bruise 4 Uniform(30,40) 

Standard Checkup/Exams 10 Uniform(10,20) 

Cardio problems 10 Uniform(10,30) 

Severe Non-Treatable 8 Uniform(5,10) 

 

The overtime is calculated on an hourly basis. 

In addition to these arrival patients, the system should be 

able to handle a mass accident causing 30 patients of type 

3-6 in a 15 minute period, which could happen at any 

moment of the opening hours. 

 

Table 11. Arrival Time Period 
Time Period Patient Arrivals per Hour 

7am – 9am  11 

9am – 11am 6 

11am – 2pm 10 

2pm – 3pm 7 

3pm – 6pm 11 

6pm – 8pm 8 

8pm – 9pm 4 

 

Table 12 shows the shift patterns for all care-providers. 

Each shift pattern has 9 working hours and a 1 hour 

break. Overtime only considers the last 2 hours of the 

day. 

Table 12. Shift Pattern 
Shift Type Working Periods 

Early 7am – Noon, 1pm – 5pm 

Late Noon – 4pm, 5pm -10pm 

Overtime 10pm – Midnight 
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The hourly cost for each care–provider and those who 

own and operate each operating room and procedure 

room is summarized in Table 13. Only the operational 

cost will be addressed. For example, since the cost of a 

Receptionist room for 3 or 4 people is almost the same, 

only the cost of the Receptionist will be taken into con-

sideration. The care–providers have to be paid the entire 

shift even if they are only used for one minute. 

 

Table 13. Resource Information 
Resource Required Cost per Hour 

Receptionist $13 

Nurse $35 

Physician Assistant $55 

Orthopaedic Technician $25 

Imaging Technician $21 

Physician $90 

Orthopaedic Physician $110 

Exam Room – Operating Cost $15 

Procedure Room – Operating Cost $30 

 

All patients have a priority that is based on the patient 

type as shown in Table 14. A patient with a higher prior-

ity will be attended to before one with a lower priority 

even though the patient with the lower priority has ar-

rived before. But once a patient treatment starts this will 

not be suspended if someone with a higher priority ar-

rives because not all the procedures are life threatening. 

 

Table 14. Patient's priority 
Patient Type Priority 

Mild Sickness 5 

Standard Sickness 4 

1st Injuries Ortho-setting/casting 2 

2nd Injuries Ortho- Non setting/casting 3 

3rd Injuries - Laceration 2 

4th Injuries – Minor Cut Bruise 3 

Standard Checkup/Exams 5 

Cardio problems 1 

Severe Non-Treatable 1 

 

The data used for the experimentation purposes was 

taken from an instance used at the Student Simulation 

Competition of Simio® LLC 2015. 

 

3. MOTIVATION 

Given a set of unscheduled patients, with specific fea-

tures, like LWBS time and processing time, the main idea 

of this problem is to determine the number of Operation 

Rooms and Exam Rooms and also the number of Staff 

we will need to achieve a reasonable value of LWBS with 

a minimum operational cost. Despite that the ideal value 

for #LWBS(%) is zero, a percentage value lower or equal 

to 10% is considered acceptable. 

 

4. DISCRETE-EVENT SIMULATION MODEL 

A discrete-event simulation model was developed in 

Simio® to assess the main features of the problem pre-

sented above. Given a specific configuration of staff and 

rooms, this model is able to represent the daily operation 

of the UCC.  

All the staff is modelled as resources that are required 

depending on the room and the patient type. The patients 

are simulated as entities that are created randomly arriv-

ing at the system according to Table 11, and once the en-

tities are created the patient type in Table 11 is assigned. 

Then these patients go to the registration room to fulfil 

the paperwork and then proceed to the waiting area with 

the help of a nurse. Once in the waiting area they have to 

wait until a Triage / Procedure / Exam Room is available 

while a nurse must be available to go with them to the 

needed room. This logic is implemented in an Add-On 

process inside the Nurse, which only accepts the 

Transport Request if there is a room to take the patient. 

Once that the procedure is finished in the room the pa-

tients come back to the waiting area where they wait for 

the next procedure until the last assigned task, which is 

the Reception to make the check out. 

The patients could only leave the UCC because: 

1. The LWBS time has already passed. 

2. They need to be transferred to the Hospital. 

3. They have completed the treatment. 

The operational cost will be grouped in 3: 

1. Cost of the use of the rooms 

2. Cost of the use of the staff in regular hours 

3. Cost of overtime 

4.1. Simulation model features 

One of the features of the model is that the manager could 

allow the model to do the activities that require Exam 

Rooms in the Procedure Room. The use of the Procedure 

Room is higher but using it when it is idle could be more 

convenient than having another Exam Room. 

Following the same idea, another important feature al-

lows a more qualified care-provider to perform the task 

of a less qualified care-provider. For example, allowing 

the Physician to do the task of the Physician’s assistant. 

Despite the use of the Physician being higher than the 

Physician’s Assistant, using an idle Physician could be 

better than hiring another Physician’s Assistant. 

The model also allows imitating the behaviour of the sys-

tem if a major accident occurs during the operation hour 

creating a peak of demand. 

The simulation model features a dashboard (see Figure 

2) that allows the user to see the most important infor-

mation during the simulation. The control chart is di-

vided into three parts: the first one refers to the opera-

tional cost, the second to the patients attended to and the 

ones that leave, and finally the use of resources. 
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Figure 2: Model Dashboard 

 

In order to facilitate the understanding of the results for 

healthcare managers a 3D visualization of the Urgent 

Care Centre was implemented. In Figure 3 we show a 

screen shot of the model after 570 minutes. 

 

Figure 3: 3D model visualization 

 

The simulation model presented here could be used to 

evaluate a particular configuration of staff and rooms by 

running multiples scenarios of uncertainty, but this 

model does not change the values or propose a different 

design. For this we use an optimization-based tool for 

helping us in the search of new configurations. 

4.2. Optimisation-based simulation approach 

In order to find a good configuration of staff and rooms, 

we generate and solve a set of 100 possible solutions us-

ing a well-known optimisation-based tool named 

OptQuest®. This tool allows us to test many solutions for 

many replication runs while varying control values, such 

as the number of staff and rooms in the system. Based on 

the information provided at each replication, the tool de-

cides a new configuration of staff and rooms to be tested. 

After that, according to the results obtained for an initial 

number of replications, we can select a subset of promis-

ing scenarios, of staff and rooms, for in-depth analysis. 

Otherwise, we can let the tool decide the best promising 

scenario, using a Kim & Nelson procedure for selecting 

the best (see Kim and Nelson, 2001). In both cases, a 

maximum number of replications should be done to fi-

nally decide, based on the interval confidence, the best 

scenario of the system. 

 

5. MATHEMATICAL FORMULATION  

An MILP model was also proposed in this work. The 

main contribution of this model is the possibility to take 

into account discrete and continuous time characteristics 

of the problem without losing the global optimal solu-

tion. To do this, a general precedence and a STN con-

straints are combined is order to represent timing and se-

quencing decisions by Eqs.(1-8), units and resource as-

signment by Eqs.(9-10) and resource and units availabil-

ity constraints are represented by Eqs.(18-23). Time-pe-

riod assignment and sequencing constraints are proposed 

in Eqs.(11-17) to link both formulations. We consider in-

tervals of 60 minutes (1 hour). Finally, the objective 

function is stated by Eqs.(24), representing the total cost 

of the system. 

Sets 

─ I    patients (i,ii)  

─ L   stages (l,ll)  

─ J   units (j,jj) 

─ R   resources (r,rr)  

─ S   shift (s,ss) 

─ T  time-period (t) 

─ TS  time at shift 

─ IL  tasks 

─ ILJ  units for task 

─ ILR  resource for task 

 

Parameters 

─ tpi,l   treatment time for task (i,l) 

─ rdi  ready time of patient i 

─ dr
r,t  availability of resource r in time t 

─ ht   time limit of time period t 

─ cj
j,s   unit cost at work-shift s 

─ cr
r,s   resource cost at work-shift s 

─ LWBSi leave time without been seen for i 

─ M   horizon time 

─ N  penalty cost per patient 

 

Binary Variables 

─ xi,ii,l,ll  1 if task (ii,ll) precedes task (i,l) 

─ wi,l,j   1 task (i,l) is performed in unit  j 

─ qi,l,r   1 task (i,l) is performed by resource r 

─ wpi,l,t   1 task (i,l) is processed in time t 

─ wsi,l,t   1 task (i,l) starts at time t 

─ wfi,l,t   1 task (i,l) finishes at time t 

─ gi   1 if patient i violates LWBS constraint 

─ fj  1 if unit j is available the whole day  

 

Positive Variables 

─ Tfi,l   finishing time of task (i,l) 

─ Tsi,l   starting time of task (i,l) 

─ reqr,t,s  resources r required at time t  

─ reqsr,s  resources r required at work-shift s 

─ recj,t,s  units j required at time t 

─ recsj,s  units j required at work-shift s 

 

Free Variables 

─ TC  total cost 
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5.1. Timing Constraints 
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5.2. Task sequencing Constraints 
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5.3. Resource sequencing Constraints 
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5.4. Unit and Resource assignment Constraints 
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5.5. Time-period assignment Constraints 
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5.6. Time-period sequencing Constraints 
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5.7. Resource availability Constraints 
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5.8. Unit availability Constraints 
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5.9. Resources and units per work-shift 
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5.10. Objective Function 

)()( ,

,

,,

,

, sr

sr

srsj

sj

sj crreqscjrecsTC               (24) 

 

6. ROLLING HORIZON 

During the last decades, many hybrid time formulations 

considering discrete-continuous representations have 

been developed to try to solve medium-term or industrial 

size problems with an acceptable computational time. 

Besides this, today there is no single representation that 

ensures an efficient solution for large-scale problems 

without any shortfall in the computational performance. 

The MILP model of this work has been developed using 

the ideas of well-known Global Precedence and STN-

based formulations. This model considers timing and as-

signment limitations and availability constraints. The sta-

tistics of the full-space MILP model are shown Table 15. 

This full-space model may become computational intrac-

table due to the number of tasks to be performed in a sin-

gle day. For example, for some cases, we could not pro-

vide a feasible solution after solving the full-space model 

for a couple of hours. 

 

Table 15. Statistics of the MILP model 
MILP full-space model Statistics 

# Equations 1,322,341 

# Continuous variables 91,560 

# Discrete variables 87,822 

 

So, in order to overcome this limitation, a dynamic de-

composition approach based on the main concepts of 

rolling horizon technique has been proposed to solve 

each deterministic instance in a reasonable time by 

scheduling one patient at a time. For this, we consider a 

relative optimality gap of 5% and a time limit of 60 sec. 

per iteration. 

After that we obtain 10 different solution configurations 

of the system. The interval confidence of Total Cost IC(1-

α=95%)=[9668,13977] and #LWBS IC(1-α=95%)=[3,11] re-

port the quality of the solutions found by the algorithm. 

The total time consumed by the algorithm for a single 

replication is about 1 hour, which is so CPU time con-

suming. This limitation is the main reasons why we do 

not consider solving a stochastic model using scenario-

based approach and alternative solution approach, merg-

ing simulation and optimization, have been done for this 

particular problem. 

 

7. SIMULATION & OPTIMISATION 

Solutions obtained by both our simulation model and the 

MILP optimisation model have been validated using the 

same data for inter-arrival time, processing time and 

LWBS time. The results indicate that the MILP can 

achieve a better configuration of staff and rooms in the 

system with a reduced total cost. By the way, the MILP 
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model becomes computational intractable for solving 

many uncertain instances. 

In order to get the benefits of both methods, the results 

of the previous MILP were used in the upper level to find 

the initial bounds of the system configuration, after test-

ing 10 specific replications (see Table 16). These bounds 

are used to restrict the values of the control variables in 

OptQuest®. Thus, this information is copied in 

OptQuest® which uses it to obtain a set of solutions. 

Each solution is run in the simulator by testing 50 repli-

cations of uncertain parameters. OptQuest® and Simio® 

run until a limited number of solutions (100 solutions) 

are reached (see Figure 4). 

 

 
 

Figure 4: Hierarchical level of the solution approach 

 

8. RESULTS  

The experimentation was run under Windows 10 in a 

desktop PC with an Intel Core i7 processor with 16 GB 

of RAM. We used the GAMS® commercial software for 

the mathematical problem and Simio® for the simulation 

purpose. 

 

Table 16. Solution bound of the MILP model 
Resource Lower 

bound 
Upper 
bound 

Registration rooms 3 3 

Triage rooms 3 3 

Exam rooms 2 3 

Procedure rooms 2 3 

Receptionist early shift 2 3 

Receptionist late shift 2 3 

Receptionist extra time 0 3 

Nurses early shift 1 3 

Nurses late shift 1 3 

Nurses extra time 0 2 

Physicians assistants early shift 2 5 

Physicians assistants late shift 2 6 

Physicians assistants extra Time 0 2 

Orthopaedic technician early shift 0 2 

Orthopaedic technician late shift 0 2 

Orthopaedic technician extra Time 0 1 

Imaging technician early shift 1 2 

Imaging technician late shift 1 2 

Imaging technician extra Time 0 1 

Physicians early shift 1 3 

Physicians late shift 1 3 

Physicians extra Time 0 1 

Orthopaedic physicians early shift 1 2 

Orthopaedic physicians late shift 0 3 

Orthopaedic physicians extra Time 0 1 

 

Results in Table 17 are obtained from Simio® by using 

OptQuest®. As we explain before, we have used the re-

sults provided by the MILP to constrain the search. 

Analyzing the results we can estimate an interval confi-

dence for Avg. Total Cost IC(1-α=95%)=[13330,16861] and 

Avg. #LWBS IC(1-α=95%)=[2,11]. Despite we know that is 

not a fair comparison, the intervals confidences of the op-

timization and the simulation models are overlapped. Ac-

cording to this, we cannot infer that the statistical differ-

ence between both models is significant enough to decide 

which model is better. So, we can assume that the quality 

of the results obtained by the simulation model is good 

enough to suggest the use of this tool for further analysis. 

 

Table 17. Best ten solutions found 
Replica-
tions 

Avg.  
Total Cost 

Half 
Width 

Avg. 
#LWBS(%) 

Half  
Width 

1 13021 30.15 8.14 1.15 

2 15028 32.26 5.91 1.03 

3 15040 28.19 8.26 0.86 

4 15043 28.28 9.56 1.08 

5 15054 24.65 8.63 0.95 

6 15207 57.14 3.72 1.16 

7 15324 70.16 4.40 2.26 

8 15553 28.12 2.97 2.14 

9 15726 75.16 8.32 1.65 

10 15966 72.16 6.99 1.34 

 

Figure 5 and Figure 6 resume the confidence interval of 

Avg. Total Cost and the Avg. #LWBS(%)found by 

OptQuest® by using our operation policy. 

One advantage of using simulation relies in the possibil-

ity to evaluate other different operation policies without 

interfering with the real world and make some recom-

mendations. 

 

 

Figure 5: Avg. Total Cost confidence interval 

 

Figure 6: Avg. #LWBS confidence interval 

The use of overtime is advisable since cancelling the 

overtime forces the UCC to have more workers to finish 

all the treatments before 9pm. Allowing the activities that 

require an exam room to be done in a procedure room 
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when available gives a saving cost of around 5% but the 

saving is not so significant since both rooms have an 

hourly cost. The most interesting recommendation is to 

allow other care–provider types to tend patients. For ex-

ample, allowing a Physician to perform the task of a Phy-

sician’s Assistant has a saving effect of more than 15%, 

since we incur in a care–provider’s cost even though he 

or she is idle almost all the day. 

The other interesting recommendation is that being ready 

for a mass accident at any time of the day and maintain-

ing the service level has an over-cost of more than 20% 

compared with the base model. This extra capacity is re-

ally costly for almost any health care system. To deal 

with the event of a massive accident, we need the patients 

to be split among different hospitals. And maybe if some-

thing like that happens all the low priority patients should 

be sent home so UCC can focus on the mass accident pa-

tients. 

 

9. CONCLUDING REMARKS 

The design and operation of a UCC represents a chal-

lenging problem for the Health-Care and PSE commu-

nity today. This problem considers different sources of 

uncertainty, e.g. patient type, inter-arrival time, treatment 

duration and LWBS, where more than 100 patients per 

day have to be treated following certain conditions crite-

ria. 

These kinds of stochastic problems may be difficult to 

solve using traditional methods in a reasonable CPU time 

due to the nature of the stochasticity and also because of 

the huge number of tasks (>1000) to be assigned and se-

quenced in the system. 

For example, if the design phase is performed using only 

simulation, the number of possibilities to consider be-

come so high that it is impossible to try to solve them in 

a reasonable time. That is the case if we setup 0-10 re-

sources for each type and we run the model for many 

hours without being sure how far from the optimal solu-

tion we are. Also, if we try to use only an MILP we could 

demonstrate the weakness in the computational perfor-

mance. 

One way to mitigate these limitations is by trying to use 

simple but, at the same time, robust solution procedures 

to find good solutions for the whole stochastic problem. 

So, the integration of simulation and optimisation 

emerges as an efficient alternative to understand and 

solve these kinds of stochastic and combinatorial prob-

lems. Thus, using the MILP model to provide the best 

and worst bounds for the next step, and then run 50 sim-

ulations to test each scenario created, allows us to solve 

this complex and challenging problem within a reasona-

ble computational performance. 

The contribution of this paper is a simulation and optimi-

sation tool for the Urgent Care Centre that to the authors’ 

knowledge does not exist in the literature. The imple-

mentation of the UCC across Europe requires changes in 

the European healthcare policies. But as a first step the 

authors suggest running a trial close to the most over-

crowded ED and measuring the effect of the UCC im-

pact. The use of optimisation and simulation tools to 

achieve an appropriate design could increase the chances 

of success of the implementation. 

In the next stage of the research we are looking for new 

ways to integrate the simulation optimisation, such as 

giving key information from the optimisation model that 

allows the simulation model to be more efficient. 

 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge financial support 

from the UK Engineering and Physical Sciences Re-

search Council (EPSRC) under project EP/M027856/1. 

 
REFERENCES 

Azadeh, A., Farahani, M. H., Torabzadeh, S., & 

Baghersad, M. (2014). Scheduling prioritized pa-

tients in emergency department laboratories. Com-

puter methods and programs in biomedicine, 

117(2), 61-70. 

Baesler, F. F., Jahnsen, H. E., & DaCosta, M. (2003). 

Emergency departments I: the use of simulation and 

design of experiments for estimating maximum ca-

pacity in an emergency room. In Proceedings of the 

35th conference on Winter simulation: driving in-

novation (pp. 1903-1906). Winter Simulation Con-

ference. 

Borkowski, S. (2012). Solutions for ED overcrowding: 

increasing urgent care centers. Journal of Emer-

gency Nursing, 38(2), 116-117. 

Burnett, M. G., & Grover, S. A. (1996). Use of the emer-

gency department for nonurgent care during regular 

business hours. CMAJ: Canadian Medical Associa-

tion Journal, 154(9), 1345. 

Connelly, L. G., & Bair, A. E. (2004). Discrete event 

simulation of emergency department activity: A 

platform for system‐level operations research. Aca-

demic Emergency Medicine, 11(11), 1177-1185. 

Derlet, R. W., & Richards, J. R. (2000). Overcrowding in 

the nation’s emergency departments: complex 

causes and disturbing effects. Annals of emergency 

medicine, 35(1), 63-68. 

Gallivan, S., Utley, M., Treasure, T., & Valencia, O. 

(2002). Booked inpatient admissions and hospital 

capacity: mathematical modelling study. BMJ, 

324(7332), 280-282. 

Jayaprakash, N., O'Sullivan, R., Bey, T., Ahmed, S. S., 

& Lotfipour, S. (2009). Crowding and delivery of 

healthcare in emergency departments: the European 

perspective. Western Journal of Emergency Medi-

cine, 10(4). 

Kim, S., and B. L. Nelson. 2001. A fully sequential pro-

cedure for indifference zone selection in simulation. 

ACM Transactions on Modeling and Computer 

Simulation, 11(3): 251-273. 

Li, L., & Benton, W. C. (2003). Hospital capacity man-

agement decisions: Emphasis on cost control and 

quality enhancement. European Journal of Opera-

tional Research, 146(3), 596-614. 

Longo, F., Nicoletti, L., Chiurco, A., & Calogero, A. 

(2014). Advanced Solutions for Healthcare Facility 

Management. International Journal of Privacy and 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2016 
978-88-97999-81-2; Bruzzone, Frascio and Novak Eds.

49

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/M027856/1


Health Information Management (IJPHIM), 2(2), 

41-56. 

Richardson, D. B. (2006). Increase in patient mortality at 

10 days associated with emergency department 

overcrowding. Medical journal of Australia, 

184(5), 213. 

Sánchez, M., Miró, Ò., Coll-Vinent, B., Bragulat, E., Es-

pinosa, G., Gómez-Angelats, E., ... & Millá, J. 

(2003). Saturación del servicio de urgencias: facto-

res asociados y cuantificación. Medicina clínica, 

121(5), 167-172. 

 

AUTHORS BIOGRAPHY 

 
ADRIÁN M. AGUIRRE is a Research Associate from 

the Department of Chemical Engineering at University 

College London in the UK. His works include integrated 

optimisation & simulation tools for the production plan-

ning & scheduling of real industrial problems under un-

certainty. 

RAUL PULIDO is a young Researcher from the Pro-

duction and Management Department at the Universidad 

Politécnica de Madrid. He obtained his PhD degree from 

the UPM and the Politecnico di Milano. His works in-

clude Optimisation and Simulation for Production and 

Health Care facilities. 

LAZAROS G. PAPAGEORGIOU is a Professor at the 

Department of Chemical Engineering at University Col-

lege London in the UK. His teaching activities are mainly 

focused on the area of optimal design and operations. He 

has more than 200 works in the areas of production plan-

ning and scheduling and supply chain optimisation for 

decision-making. 

ALVARO GARCÍA-SÁNCHEZ is a Professor at the 

Department of Production and Management from Uni-

versidad Politécnica de Madrid in Spain. He is a Profes-

sor of “Discrete-Event Simulation” and “Optimisation”. 

His research interests are centered in the area of discrete 

event simulation and optimisation for production man-

agement and logistics. 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2016 
978-88-97999-81-2; Bruzzone, Frascio and Novak Eds.

50


