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ABSTRACT 
Inventory systems with uncertainty go hand in hand with 
the determination of a safety stock level. The decision on 
the safety stock level  is based on a performance measure, 
for example the expected shortage per replenishment 
period or the probability of a stock-out per replenishment 
period. The performance measure assumes complete 
knowledge of the probability distribution during lead time, 
which might not be available. In case of incomplete 
information regarding the lead-time distribution of 
demand, no single figure for the safety stock can de 
determined in order to satisfy a performance measure. 
However, an optimisation model may be formulated in 
order to determine a safety stock level which guarantees 
the performance measure under the worst case of lead-time 
demand, of which the distribution is known in an 
incomplete way. It is shown that this optimisation problem 
can be formulated as a linear programming problem.  

 
Keywords: inventory management, linear programming, 
incomplete information 
 

 
1. INTRODUCTION 
Some uncertainty in an inventory system (such as lead 
time, quantity and quality) depends on the suppliers. If the 
suppliers introduce too much uncertainty, corrective action 
should be taken. Some uncertainty, however, is attributable 
to customers, especially demand. If insufficient inventory 
is hold, a stock-out may occur leading to shortage costs. 
Shortage costs are usually high in relation to holding costs. 
Companies are willing to hold additional inventory, above 
their forecasted needs, to add a margin of safety.  

Determination of an inventory replenishment policy, 
of the quantities to order, of the review period are typical 
decisions to be taken by logistics managers. Decisions are 
made through optimisation models taking a performance 
measure into consideration which might be cost-oriented 
or service-oriented. Performance measures of the service-
oriented type may be expressed relatively as a probability 
of a stock-out during a certain replenishment period, or 
may be expressed absolutely in terms of number of units 
short, which is a direct indication for lost sales. Both 
performance measures are taken into consideration and 
special attention will be paid to feasible combinations of 
company’s objectives regarding both performance 
measures. 

For a definition of both measures we refer to chapter 
7 in Silver, Pyke and Peterson (1998) and define the 
measures as: 

The expected shortage per replenishment cycle 
(ESPRC) is defined as (with t the amount of safety 
stock):To avoid any difficulties during the publishing 
process, authors must not modify any of the styles. 

The expected shortage per replenishment cycle 
(ESPRC) is defined as (with t the amount of safety stock): 

 

∫
+∞

−=
d

dxxftxESPRC )()(    (1) 

 
If ordered per quantity Q the fraction backordered is 

equal to ESPRC/Q and a performance measure, indicated 
as P2, is defined as 

 
QESPRCP /12 −=    (2) 

 
The other performance measure is the probability of a 

stock -out in a replenishment lead time , defined as: 
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From a production or trading company’s point of 

view, a decision might be formulated to answer the 
following question: given a maximum expected number of 
units short and/or a maximum stock-out probability the 
company wants to face, what should be the safety 
inventory at least (or at most)? The question with the ‘at 
most’ option might be only of academic nature, as it 
reflects the most optimistic viewpoint. In human terms, 
this question would be interpreted as: ‘would there exist 
any probability distribution so that I can still reach my 
preset performance criteria given a specific safety 
inventory?’. This type of question is not relevant for a 
manager facing a real-life situation. 

In case the distribution of demand is known, 
determining the inventory level, given a maximum 
shortage or maximum stock-out probability,  reduces to the 
calculation of the inverse cumulative probability function. 
The decision problem becomes more difficult if 
incomplete information exists on the distribution of 
demand during lead time, for  example only the range of 
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demand, or the first moment, or the first and second 
moments are known. In such a case no single value can be 
determined but rather an interval. 

In classical textbooks not too much attention is paid 
to the shape of the distribution of the demand during lead 
time. Mostly, based on the first and second moments, the 
safety stock level is determined using the normal 
distribution. When of relevance, one rather should look for 
a distribution, which is defined only for non-negative 
values and allows for some skewness. In the literature on 
inventory control, frequent reference is made to the 
Gamma distribution.  

It is generally known that, given a shape of the 
demand distribution, the higher the coefficient of variation 
the more a company needs inventory to reach a given 
service level. In an investigation on the relevance of the 
demand shape Bartezzaghi, Verganti, and Zotteri (1999) 
find out that the shape is very relevant. In extreme cases 
the impact of different demand shapes on inventories is 
comparable to the effect of doubling the coefficient of 
variation. 

This research deals with the case where the demand 
distribution during lead time is not completely known. 
This situation is realistic either with products which have 
been introduced recently to the market or with slow 
moving products. In both cases not sufficient data are 
available to decide on the functional form of the demand  
distribution function. Some but not complete information 
might exist like the range of the demand, its expected 
value, its variance and maybe some knowledge about uni-
modality of the distribution. 

In case incomplete information is available regarding 
the demand distribution the integrals of the performance 
measures P1 and P2 cannot be evaluated in an analytical 
manner. This means that also the inverse problem of 
determining the safety stock level to satisfy the 
performance measures cannot be obtained analytically. 
However, the integrals can be approximated by a linear 
programming formulation with a large set of constraints.  
 
2. BOUNDS ON THE PERFORMANCE 

MEASURES IN THE CASE OF INCOMPLETE 
INFORMATION  

In this section the ESPRC measure is focused. First, a link 
is identified with a similar integral formulation which 
appears in the field of actuarial sciences.  Second, some 
results, which were obtained in actuarial sciences, are 
transferred to our type of application. 

 
2.1 Towards an analogy in insurance mathematics 
In insurance mathematics, an insurance company using the 
option of re-insurance is confronted with a stop-loss 
premium. A stop-loss premium limits the risk X of an 
insurance company to a certain amount d. If the claim size 
is higher than d the re-insurance company takes over the 
risk X-d. The stop-loss premium is based on the expected 
value of X-d, which in case of a known claim size 
distribution may be defined as: 

 

( ) ( )∫
∞

+−
0

xdFtx     (4) 

where F(x) represents the claim size distribution 
(Goovaerts, De Vylder, and Haezendonck 1984).  

The same formula (4) may be useful in the 
performance evaluation of inventory management in case 
of uncertain demand during lead time. When a company 
holds t units of a specific product in inventory starting a 
period between order and delivery, any demand less than t 
is satisfied while any demand X greater than t results in a 
shortage of X-t units. A lesser number of units short results 
in a better service to the customer. In this way formula (4) 
is a measure for customer service in inventory 
management. 

In the following sections lower and upper bounds are 
obtained for the performance measure under study, given 
various levels of information about the demand 
distribution. From a production or trading company’s point 
of view, a decision might be formulated to answer the 
following question: given an expected number of units 
short the company wants to face, what should be the safety 
inventory at least or at most?  

 
2.2 The case of known range, mean and variance 
Let the size of the demand X for a specific product in a 
finite period have a distribution F with first two moments 
µ1 = E(X) and µ2  = E(X2). 

From a mathematical point of view,  the problem is to 
find the following bounds: 
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and  
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where Ø is the class of all distribution functions F 

which have moments µ1 and µ2, and which have support in 
R+. Let further s 2 = µ1- µ2

2. We assume t to be strictly 
positive. 

For any polynomial P(x) of degree 2 or less, the 
integral 
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only depends on µ1 and µ2, so it takes the same value 

for all distributions in Ø. There exists some distribution G 
in Ø for which the equality holds: 
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As distribution G a two-point or three-point 

distribution is used. The equality (6) is attained when P(x) 
and (x-t)+ are equal in both points of G. The best upper and 
lower bounds on this term with given moments µ1 and µ2 
are derived. The method is inspired by papers of Janssen,  
Haezendock, and Goovaerts (1986) and by Heijnen and 
Goovaerts (1989). In the following we assume the known 
range of the distribution to be a finite interval [a,b]. 
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A probability distribution F is called n-atomic if all its 
probability mass is concentrated in n points at most. The 
points are called the atoms of the distributions. The 
problem (5a) has a 2-atomic solution and (5b) has a 3-
atomic solution. 

If α, β are two different atoms of the 2-atomic 
probability distribution F satisfying the first-order moment 
constraint ∫ = 1µxdF , then the corresponding probability 

masses pα and pβ  are 
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If α, β, γ are three different atoms of the 3-atomic 

probability distribution F satisfying the moment 
constraints ∫∫ == 2

2
1 , µµ dFxxdF , then the corres-

ponding probability masses pα , pβ  and pγ  are 
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The domain of the parameters is  
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Further the following abbreviations are used: 
2

1
22 )( tt −+= µσσ µ and )(2

1 bac += . Further let 1µ  

and 2µ  be chosen that the previous inequalities hold, then 

let 
r

r
r

−
−
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µ

µµ for every [ ]bar ,∈  and 1µ≠r . 

Before moving towards the application, it should be 
stated that the bounds and their use in applications can be 
translated from any distribution defined on [a,b] into the 
bounds with a distribution defined on [0,b0], where b0 = b –  
a. Further let t0 = t – a, µ10 =  µ1 – a and µ20 = µ2 – 2aµ10 – 
a2. In the following paragraphs we work, without loss of 
generalisation, with distributions defined on [0,b0]. 

The use of the bounds is illustrated by means of a 
numerical example. Let the demand be defined on the 
interval [25,75]. The demand follows a distribution with 
only the following characteristics known: µ1 = 45 and µ2 = 
975. This means that in Tables 1 and 2, the following 
values have to be used for 2010 =µ , 60020 =µ , 

500 =b , 333.13'
0 =b , and 300 ' = . The values for upper 

and lower bounds are shown in tables 3 and 4. From 
Tables 3 and 4, a decision-maker may be decide which 
level of inventory to hold, given a target value on the 
number of units short W as a performance measure. From 
these tables he can derive upper bounds on t0, which 
correspond to a pessimistic viewpoint and lower bounds on 
t0, which correspond to an optimistic viewpoint. The 
values corresponding to both viewpoints for the numerical 
example under study are given in tables 5 and 6. 

 
Table 1: Lower Bounds on the Stop-loss Premium in an interval [0,b0] 

Lower bounds  Conditions 

010 t−µ  '
000 bt ≤≤  or 

( ) ( )0100102000 bbt −−≤≤ µµµ  

001020 /)( btµµ −  '
0

'
0 0≤≤ tb  or 

( ) ( ) 1020001001020 µµµµµ ≤≤−− tbb  
0 

00
'0 bt ≤≤  or 001020 bt ≤≤µµ  

 
Table 2: Upper Bounds on the Stop-loss Premium in an interval [0,b0]  
Upper bounds  Conditions 

( ) 200102010 µµµµ t−  2/0 '
0 ≤t  or 

( )10200 2/ µµ≤t  

( ) ( ) 2/)( 100
2
1020010 µµµµ −+−+− tt  ( ) 2/2/0 '

000
' bbt +≤≤  or 

( ) ( ) ( )( )010
2
02001020 22/ bbt −−≤≤ µµµµ  

( )( ) ( ) ( )( )2
100

2
102000

2
1020 µµµµµ −+−−− btb  ( ) 0

'
00 2/ tbb ≤+ or 

( ) ( )( ) 0010
2
020 2 tbb ≤−− µµ  
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Table 3: Lower Bounds on the Number of Units Short for the illustrative example 

Lower bounds  Conditions 

020 t−  333.130 0 ≤≤ t  

05/212 t−  30333.13 0 ≤≤ t  

0 5030 0 ≤≤ t  
 

Table 4: Upper Bounds on the Number of Units Short for the illustrative examp le 
Upper bounds  Conditions 

03/220 t−  150 0 ≤≤ t  

( ) 2/)2020020( 00 −++− tt  667.3115 0 ≤≤ t  

( ) 11/2100 0t−  50667.31 0 ≤≤ t  

 
Table 5: Lower bounds on the safety inventory level 

Lower bounds  Requirements 
W2/530 −  667.6≤W  

W−20  W≤667.6  
 

Table 6: Upper bounds on the safety inventory level 
Upper bounds  Requirements 

W2/1150 −  333.3≤W  

( ) WWW /2050 2 +−  10333.3 ≤≤ W  

( ) 2/360 W−  W≤10  

 
3. A METHOD TO DETERMIN E SAFETY STOCK 

IN THE CASE OF INCOMPLETE INFOR-
MATION ON DEMAND 

It has been shown in Janssens and Ramaekers (2008) how 
the optimisation problem (5a) with constraints interms of 
first and second moment of the demand distributions, has a 
dual program which is a linear program with an infinite 
number of constraints. In Goovaerts, Haezendonck, and De 
Vylder (1982) an idea is launched to replace the set of 
constraints  by a large finite subset and then to solve the so 
obtained linear program. 

The method assumes that integral constraints can be 
transformed into a sequence, with increasing number of 
evaluation points, of optimisation problems and where the 
integral is replaced by an infinite sum. Instead of 
evaluating the objective function on a continuous interval 
[low,high], the functions are evaluated in a discrete 
number of points xi (i = 1..N). The assumption reflects the 
idea that if N à ∞ the solution of the continuous problem 
is found.  

This leads to an optimisation problem, where: 
t = the level of the safety inventory 
pi = the probability mass in point xi 
z1 = the expected value of X 
z2 = the absolute second moment of X 
z3 = the maximum allowed number of items short. 
The optimisation problem might be formulated as: 
[P1] Min t 
Subject to 
 

∑ =
i

ip 1  

∑ =
i

ii zpx 1  

∑ =
i

ii zpx 2
2  

∑ ≤− +
i

ii zptx 3)(  

where (xi -t)+ stands for max(xi-t,0).  The decision 
variables in [P1] are t and pi (i= 1..N), where N represents 
the number of discrete points which have been chosen in 
the experiment.  

Problem [P1] offers the answer to the following 
question: what is the minimal amount of inventory so that 
a distribution with given characteristics exists in which the 
expected number short maximally equals the value z3. 

The non-linear constraint may be approximated by 
letting the value of t coincide with one of the xi –values (so 
as N à∞ , the approximation takes the correct value). In 
such a way the constraint in linearised.   

In the case t coincides with a point xj then 

∑
=

+ ≤−
n

i
jii zxxp

1
3)(  . 

A binary variable needs to be introduced to indicate 
the condition ‘t = xj’. In the case t does not coincide with a 
point xj, a general truth should be indicated, for example, 
‘the expected number short cannot be larger than the 
expected demand’, expressed by a binary variable y j.   
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0
1
else

xtify jj ==
. 

As t can coincide with only one xj-value, the 
additional constraint is introduced: 

∑
=

=
n

j
jy

1
1. 

The y-variable is introduced in the last constraint as: 

∑
=

+ −+≤−
n

i
jjjii yzyzxxp

1
13 )1()(  

Finally a link should be made between t and the value 
of x with which t coincides 

iyxt ii ∀≥ ,  
If y = 0, a universal truth is mentioned. 

This elaboration will be illustrated by means of the 
example used in the previous section. With b0 = 50, the 
first and second moments in the interval [0,50], the 
following values µ10 = 20 and µ20 = 600 are used. The 
worked out example, in LINDO code, is shown in figure 1. 
In this approximation 10 intervals of equal length in the 
interval [0,50] are chosen. Inclusion of both boundaries of 
the interval, the linear program makes use of 11 xi-
variables.  

Take for example the  maximum number of units 
short W = 6. From table 5, it can be obtained that  the 
lower bound for t equals t = 15. The linear program in 
figure 1 leads to a minimum of t = 15, with probability 
mass in three evaluation points x1 (X=0), x4 (X=15) and x11 
(X=50). The respective probability masses are: p1 = 
0.06667,  p4 = 0.76195 and  p11= 0.17143. 

 
 
min t 
subject to 
p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 = 1 
0 p1 + 5 p2 + 10 p3 + 15 p4 + 20 p5 + 25 p6 + 30 p7 + 35 p8 + 40 p9 + 45 p10 + 50 p11 = 20 
0 p1 + 25 p2 + 100 p3 + 225 p4 + 400 p5 + 625 p6 + 900 p7 + 1225 p8 + 1600 p9 + 2025 p10 + 2500 p11 = 600 
5 p2 + 10 p3 + 15 p4 + 20 p5 + 25 p6 + 30 p7 + 35 p8 + 40 p9 + 45 p10 + 50 p11 + 14 y1 < 20 
5 p3 + 10 p4 + 15 p5 + 20 p6 + 25 p7 + 30 p8 + 35 p9 + 40 p10 + 45 p11 + 14 y2 < 20 
5 p4 + 10 p5 + 15 p6 + 20 p7 + 25 p8 + 30 p9 + 35 p10 + 40 p11 + 14 y3 < 20 
5 p5 + 10 p6 + 15 p7 + 20 p8 + 25 p9 + 30 p10 + 35 p11 + 14 y4 < 20 
5 p6 + 10 p7 + 15 p8 + 20 p9 + 25 p10 + 30 p11 + 14 y5 < 20 
5 p7 + 10 p8 + 15 p9 + 20 p10 + 25 p11 + 14 y6 < 20 
5 p8 + 10 p9 + 15 p10 + 20 p11 + 14 y7 < 20 
5 p9 + 10 p10 + 15 p11 + 14 y8 < 20 
5 p10 + 10 p11 + 14 y9 < 20 
5 p11 + 14 y10 < 20 
14 y11 < 20 
1 t > 0 
1 t - 5 y2 > 0 
1 t - 10 y3 > 0 
1 t - 15 y4 > 0 
1 t - 20 y5 > 0 
1 t - 25 y6 > 0 
1 t - 30 y7 > 0 
1 t - 35 y8 > 0 
1 t - 40 y9 > 0 
1 t - 45 y10 > 0 
1 t - 50 y11 > 0 
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 = 1 
end 
int y1 .. int y10 

Figure 1: LINDO Code for the Illustrative Example 
 

4. AN APPLICATION IN THE SINGLE-PERIOD 
(NEWSVENDOR) INVENTORY PROBLEM 

The single period-inventory problem or newsvendor 
problem aims to decide the stock quantity of an item when 
there is a single purchasing opportunity before the start of 
the selling period and the demand for the item is unknown. 
A trade-off exists between the risk of overstocking 
(forcing disposal below the unit purchasing cost) and the 
risk of understocking (losing the opportunity of making a 
profit) (Gallego and Moon 1993). Many extensions to the 
newsvendor problem have been proposed in the last 

decades, including dealing with different objectives and 
utility functions, different supplier pricing policies, 
different news-vendor pricing policies and discounting 
structures, different states of information about demand, 
constrained multi-products, multiple -products with 
substitution, random yields, and multi-location models 
(Khouja 1999). 

Assume a single product is to be ordered at the 
beginning of a period and can only be used to satisfy 
demand in that period. The relevant costs on basis of the 
ending inventory are: 
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min 0.35 Q + 0.9 w1 + 0.9 w2 + 0.9 w3 + 0.9 w4 + 0.9 w5 + 0.9 w6 + 0.9 w7 + 0.9 w8 + 0.9 w9 + 0.9 w10 
subject to 
p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 = 1 
0 p1 + 5 p2 + 10 p3 + 15 p4 + 20 p5 + 25 p6 + 30 p7 + 35 p8 + 40 p9 + 45 p10 + 50 p11 = 20 
0 p1 + 25 p2 + 100 p3 + 225 p4 + 400 p5 + 625 p6 + 900 p7 + 1225 p8 + 1600 p9 + 2025 p10 + 2500 p11 = 600 
5 p2 + 10 p3 + 15 p4 + 20 p5 + 25 p6 + 30 p7 + 35 p8 + 40 p9 + 45 p10 + 50 p11 - w1 + 1000 y1 < 1000 
5 p3 + 10 p4 + 15 p5 + 20 p6 + 25 p7 + 30 p8 + 35 p9 + 40 p10 + 45 p11 - w2 + 1000 y2 < 1000 
5 p4 + 10 p5 + 15 p6 + 20 p7 + 25 p8 + 30 p9 + 35 p10 + 40 p11 - w3 + 1000 y3 < 1000 
5 p5 + 10 p6 + 15 p7 + 20 p8 + 25 p9 + 30 p10 + 35 p11 - w4 + 1000 y4 < 1000 
5 p6 + 10 p7 + 15 p8 + 20 p9 + 25 p10 + 30 p11 - w5 + 1000 y5 < 1000 
5 p7 + 10 p8 + 15 p9 + 20 p10 + 25 p11 - w6 + 1000 y6 < 1000 
5 p8 + 10 p9 + 15 p10 + 20 p11 - w7 + 1000 y7 < 1000 
5 p9 + 10 p10 + 15 p11 - w8 + 1000 y8 < 1000 
5 p10 + 10 p11 - w9 + 1000 y9 < 1000 
5 p11 - w10 + 1000 y10 < 1000 
1 Q - 0 y1 > 0 
1 Q - 5 y2 > 0 
1 Q - 10 y3 > 0 
1 Q - 15 y4 > 0 
1 Q - 20 y5 > 0 
1 Q - 25 y6 > 0 
1 Q - 30 y7 > 0 
1 Q - 35 y8 > 0 
1 Q - 40 y9 > 0 
1 Q - 45 y10 > 0 
1 Q - 50 y11 > 0 
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 = 1 
end 
int y1 .. int y11 

Figure 2: LINDO Code of the Newsvendor Example 
 

c0 = cost per unit of positive inventory remaining 
at the end of the period (overage cost)  

c1 = cost per unit of unsatisfied demand (underage 
cost). 

Further let: 
Q: order quantity 
D: random demand with a distribution F with 

density f defined on a finite interval [a,b] with a ≥ 0 and  
b > a. 

Define G(Q,D) as the total overage and  underage 
cost incurred at the end of period when Q units are 
ordered at the start of the period and D is the demand. 
Then it follows that  

),0max(),0max(),( QDcDQcDQG uo −+−=    (9) 
The expected cost G(Q) = E[G(Q,D)] can be 

calculated as: 

∫ ∫
∞

−+−=
Q

Q
u dxxfQxcdxxfxQcQG

0
0 )()()()()(      (10) 

(Nahmias 1993). 
The newsvendor formulation also can be used to 

make decisions in a profit framework. This formulation 
needs information about the unit cost c, a mark-up m 
indicating the relative return per currency unit sold and 
a discount d indicating the loss per currency unit unsold 
(Gallego and Moon 1993) : 

c: unit cost (c > 0) 
p: unit selling price (p = (1+m)c, m > 0) 

s: unit salvage value (s = (1-d)c, d > 0). 
The expected profit in function of the order 

quantity, P(Q) , can be written as: 
cQDQsEDQEpQP −−+= +)(),min()(      (11) 

since min(Q,D)  units are sold, (Q-D)+ are salvaged, 
and Q units are purchased. Gallego and Moon (1993) 
show that maximizing P(Q)  is equivalent to minimizing 
 

+−++ )()( QDEdmdQ   (12) 
Similar to the case in section 3, the non-linear part 

of the objective function may be approximated by 
letting the value of Q coincide with one of the xi –values 
(so as N à∞ , the approximation takes the correct 
value). In such a way the constraint in linearised.  The 
objective function takes the form: 

∑ =
++

N

j jwdmdQ
1

)(   (13) 

in which the newly introduced variables wj take the 
values 

∑
=

+−=
n

i
jiij xxpw

1
)(  

in the case Q coincides with a point xj and 0 
otherwise. 

This logic can be introduced in some of the 
constraints making use of a binary variable  introduced 
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