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ABSTRACT 
Hidden non-Markovian Models (HnMMs) were 
introduced and formalized as an extension of Hidden 
Markov Models for the analysis of partially observable 
stochastic processes. Their main advantage over HMM 
is the possibility to model arbitrary distributions for 
state transition duration, so that the unobservable 
stochastic process needs not to be Markovian. Besides 
academic examples, HnMMs were applied to gesture 
recognition and performed well in distinguishing 
similar gestures with different execution speeds. While 
the Proxel-Method enabled the evaluation for arbitrary 
HnMMs, there was no opportunity to train these 
models. Therefore, the models for different gestures had 
to be parameterized manually. This fact reduced the 
applicability in real gesture recognition dramatically. 
This paper presents a solution to this problem, 
introducing a supervised training approach that 
increases the applicability of HnMMs in gesture 
recognition. 
 
1. INTRODUCTION 
Hidden non-Markovian Models (HnMMs) were 
introduced and formalized by Krull and Horton (2009) 
as an extension of Hidden Markov Models for the 
analysis of partially observable stochastic processes. 
Their main advantage over HMM is the possibility to 
model arbitrary distributions for state transition 
durations, so that the unobservable stochastic process 
needs not to be Markovian. 
 Besides academic examples (e.g. Buchholz et. al 
2010; Krull et. al 2010), HnMMs were applied to 
gesture recognition and performed well in 
distinguishing similar gestures with different execution 
speeds (Bosse et al. 2011). For that purpose, significant 
changes in gesture acceleration were logged while 
execution and the likelihood of different HnMMs to 
generate such a sequence was computed. The model 
with the highest value in this evaluation task represents 
the recognized gesture. 
 While the Proxel-Method developed by Horton 
(2002) enabled the evaluation for arbitrary HnMMs, 
there was no opportunity to train these models 
automatically. Therefore, the models for different 
gestures had to be parameterized manually. This fact 

reduced the applicability in real gesture recognition 
dramatically. 
 This paper has the goal to present a solution to this 
problem, introducing a supervised training approach 
that increases the applicability of HnMMs in particular 
in gesture recognition, but also in other application 
areas where a fully specified model of the hidden 
system is not readily available. 

The next section will review some existing training 
methods of related paradigms and introduce HnMMs. 
The third section describes the steps of the training 
approach and the fourth section comments on 
implementation details. The experiments section 
contains two test cases. The paper is concluded by the 
sixth section, which evaluates the approach presented 
and highlights some areas future work. 
 
2. RELATED WORK 
Training a mathematical model to increase its 
applicability is a well addressed problem in Machine 
Learning. There are two basic forms of Machine 
Learning: Supervised and unsupervised learning. In 
supervised learning input and desired output data is 
used, so that the model can learn the relationship 
between them (e.g. Classification). In unsupervised 
learning, no output data is given and the model has to 
describe the distribution of the data (e.g. Clustering) 
(Marsland 2009). 
 For Hidden Markov Models there exist well known 
unsupervised training algorithms, like Baum-Welch- 
and Viterbi-Training (Fink 2008). These methods are 
iterative and guarantee a greater or equal likelihood of 
the model after each iteration. Buchholz (2012) adapted 
the Baum-Welch-Algorithm to a subclass of HnMMs 
also used in gesture recognition, but there is still 
missing a concept to train arbitrarily distributed state 
transition durations. 
 On the other hand, approaches for supervised 
training of Hidden Markov Models like (Mamitsuka 
1998) were developed to train the evaluation probability 
to a specific target value. An algorithm that trains a 
Hidden Markov Model from sequences with desired 
states could not be found in literature, probably because 
the computation of transition and output probabilities 
would be trivial in that case. 
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 For the problem of gesture recognition addressed in 
(Bosse et. al 2011) none of these approaches is suitable 
in general. Because semantic information is encoded in 
the model, a training method must respect this and may 
not change the basic structure of the model.  Because of 
this fact, the current state of the underlying model 
should be computed from training data, so that the 
training method can respect the semantics of the model. 

 
2.1. Hidden non-Markovian Models 
An HnMM after Krull and Horton (2009) consists of a 
state space with transitions between the states that are 
time-dependent. In a specific case of HnMMs (Eall), 
every transition must emit a symbol when it fires. 
Buchholz (2012) named this subclass Conversive 
HnMM and developed algorithms for all relevant 
problems. CHnMM assign every transition with a 
discrete random variable that indicates what emission 
probability each output symbol has. In addition, a 
distribution of the initial probability of each state is 
given. 
 The evaluation task of CHnMM is solved by an 
approach very similar to the Forward Algorithm from 
HMM (Buchholz 2012). This algorithm requires a 
completely defined system description, including the 
continuous distributions of transition firing times and 
discrete distributions for symbol emissions. These 
distributions must be provided by a training algorithm. 
 The state space of an HnMM can be computed 
from arbitrary models that represent discrete stochastic 
processes. Furthermore, the state space of a model does 
not need to be computed a-priori, so the training 
algorithm can parameterize a discrete stochastic model 
to avoid problems like state space explosion. In this 
work, augmented stochastic Petri nets are used as the 
user model. 

 
2.2. Augmented Stochastic Petri Nets 
Krull (2009) defines Stochastic Petri Nets as a 7-tuple 

.  is the set of places,  a set of 
transitions and  a set of arcs between places and 
transitions.  must form a bipartite graph.  is a 
set of so called inhibitor arcs while  is a function that 
assigns integer values to each type of arc.  is the 
initial marking of all places and  can assign a so called 
guard function to each transition that indicates whether 
a transition is activated or deactivated for a specific 
marking. 

A transition is activated if and only if every place 
connected to this transition has at least the number of 
tokens the connecting input arcs are assigned, no source 
of an inhibitor arc to this transition has at least the 
specified number of tokens and the corresponding guard 
function of this transition evaluates to true in the current 
marking. After a randomly distributed amount of time, 
the transition fires, deleting the required tokens and 
creating tokens in the places the transition is connected 
to. If another activated transition fires before that time 
and the new marking disables the transition, there are 
two policies: If the transition is marked as “Race Age”, 

the transition saves the remaining firing time and 
resumes the countdown when it is active again. With the 
policy “Race Enabled” the whole activation time is 
deleted and upon re-enabling, the firing distribution is 
sampled again. 

Buchholz (2012) defines augmented stochastic 
Petri nets. Here each transition is augmented by the 
symbol emissions it can produce with probabilities for 
each possible symbol. The state space of such an ASPN 
is an HnMM. ASPN can be considered the user model 
corresponding to the computational model HnMM. 

 
2.3. Example System Description 
The current paper is illustrated using an example first 
defined by Buchholz et. al (2010). Two machines 
process products in randomly distributed intervals. 
These products are tested after both machine results are 
joined. The tester produces a protocol with test 
timestamp and state of the product (OK or Defect). 
Figure 1 illustrates the system and shows an example of 
such a system protocol.  

 
Figure 1: Schematic of tester example 

 

 This system can be converted into the augmented 
stochastic Petri net (Buchholz 2012) shown in Figure 2. 
The ASPN represents the system as a stochastic Petri 
net with output symbols representing the tester results 
attached to the state transitions.  

 
Figure 2: Augmented stochastic Petri net of the tester 

example 
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Figure 3: Example protocol of the tester system 

 
 The protocol produced by the tester (see Figure 3 
for an example) does not contain information on the 
machine that processed a particular product, e.g. 
produced a certain defective item. Therefore, this part of 
the model can be considered unobservable. The task to 
be solved using HnMM is therefore to reassign the 
different protocol entries to the machines, thereby 
determining the sources of defective items. 

 
3. APPROACH 
The goal of the desired approach is a supervised 
training of a Hidden non-Markovian Model to improve 
the recognition accuracy for a given real system. For 
that purpose, the hidden discrete model must be adapted 
by using training data that contains more information 
than the data from the real system to be reconstructed 
later on. A second property of the approach should be 
that the trained model gets nearer to the original with 
increasing training data amount. 

 
3.1. Preconditions 
A symbol sequence entry of an HnMM consists of two 
parts: timestamp and symbol. For training purposes, 
those sequence entries are annotated with the transition 
that generated the symbol emission as shown in Figure 
4. The user model to be trained is an ASPN with a 
known structure. The model parameters that will be 
trained are the continuous distribution functions of the 
timed transition and the corresponding symbol output 
probabilities. An initial state probability distribution 
will also be determined. This corresponds to parametric 
training. 

 

 
Figure 4: Annotated example trace of the tester system 

 
 Two main tasks can be identified to solve this 
problem: Firstly, for every transition samples of the 
firing time must be computed from the annotated 
symbol sequence and secondly, the distribution must be 
estimated from these firing time samples. 

 
3.2. Computation of firing time samples 
For every event in the protocol at time  representing a 
firing transition, the corresponding firing time can be 
computed in the following way: 

 
  (1)

 
That means the relative firing tfire time is the difference 
between the timestamp of the firing t and the time when 
the transition was last activated tact.  is the current age 
of the transition which is not equal to zero if the 
transition is race age and was activated before but did 
not fire. While the timestamp is available of course, the 
other two values are not from the protocol itself.  
 But they can be computed easily when the protocol 
is processed sequentially. Given the initial marking and 
the structure of the underlying model, at every 
timestamp  the marking  - depending on the given 
transition - is stored.  From this marking the activated 
transitions can be inferred. For every transition this 
activation time and for all race age transitions that are 
not longer activated the age, i.e. the difference between 
timestamp and last activation time, is stored. 
 With this procedure, every entry in the sequence 
produces a relative firing time for the given transition, 
so that a collection of firing times arises.  

 
3.3. Estimating the Probability Distribution 
Estimating a probability distribution from a set of 
realizations is a problem well addressed in density 
estimation. The methods for this task are divided in 
parametric and non-parametric methods (Eggermont 
and LaRiccia 2001). The first mentioned is about 
estimating the parameters of known distribution types, 
the normal distribution for example. If none of these 
distributions fits the data, a non-parametric method can 
be applied. This can be a simple histogram or the more 
complex kernel estimation. 

 
4. IMPLEMENTATION 
To test the supervised training, the approach needed to 
be implemented. The computation of firing times can be 
done with a Petri net simulation providing the following 
methods: For a specific marking, a list of active 
transitions and for a given transition, a new marking 
must be returned. In addition to that, some auxiliary 
variables are needed. Besides the current index 
corresponding to the processed symbol sequence entry, 
the current marking of the Petri net must be saved 
(integer array, size ). Also for every transition, the 
last activation times and the age times must be stored 
(float array, size ). The latter array can be 
minimized, if only race age transitions are considered. 
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In addition to that, for every transition the symbol 
emissions must be counted. 
 From the collected data, the distributions must be 
computed. The estimation of the discrete probability 
distribution of the symbol emissions are easy to 
compute. Estimator is the relative frequency of the 
symbol emission. 
 For the estimation of the continuous probability 
distributions of the firing times the kernel estimation 
seems to be the most general approach. Although it can 
be shown that the error of this method tends to zero 
with enough data (Devroye and Lugosi 2001), a 
parametric estimation reduces the error much faster 
with respect to training data if the true distribution is a 
known one. This holds because less information is need 
to parameterize a known distribution than an unknown 
one. 
 Due to these facts, both approaches are considered 
in this concrete implementation. Firstly, an optimization 
for some known probability densities is carried out. 
Minimizing the square error between observed values 
and expected values in defined intervals returns the 
distribution fitting best.  
 If this distribution does not pass a chi-square-test at 
a specific significance level (from Banks et. al 2001), 
kernel estimation is performed with Gauss kernel and 
window size chosen according to Silverman (1998).  
 The needed cumulative distribution function is 
computed symbolically for the corresponding densities 
and through numerical integration for densities without 
symbolic integrations and kernel density. 
 With the estimated distributions, the augmented 
stochastic Petri net can be parameterized and the 
CHnMM evaluation algorithm is now able to compute 
the evaluation probabilities of other protocol sequences. 

 
5. EXPERIMENTS 
To test the developed approach, two experiments are 
performed. Since it is not clear yet, how to generate 
training data from real systems, training is tested using 
two academic models, where a simulation model is 
available to generate both training data and test 
sequences.  
 Therefore we have as reference value to estimate 
the quality of the trained models the evaluation 
probability of each sequence computed using the actual 
generating model. The training approach is successful if 
the evaluation probability of the sequence for the 
trained model is similar to this reference value. In 
particular, the difference between the values should 
decrease the more training data is available.  
 To illustrate the different effects of parametric and 
non-parametric estimation, both approaches are shown 
in the experiment results. 

The computation time needed for extracting and 
finding the distributions from the data, as well as the 
runtime of the evaluation task were both under one 
minute and are therefore not considered in this paper. 

 

5.1. Tester Example 
The first experiment is carried out using the tester 
example system described in Section 2.3. For training 
purposes, augmented training protocols of different 
lengths were generated (20, 50, 100, 200, 500, 1,000, 
2,500 and 10,000 entries for each transition). One 
model is trained using kernel estimation, and the 
parametric training is performed using normal 
distributions. 
 Then for ten different protocols, the evaluation 
probability of the protocol given the trained model is 
computed. Reference evaluation probabilities are 
computed using the CHnMM of the generating model. 
The mean relative difference (can also be interpreted as 
the error) of the trained model probabilities and the 
reference values using a particular amount of training 
data was computed using Equation (2). 

 

௡തതതതതതݎݎܧ ൌ ଵ
ଵ଴
∑ |௣೔,೙ି௣೔,ೝ೐೑|

௣೔,ೝ೐೑
ଵ଴
௜ୀଵ    (2)

 

 The reference evaluation probability of test 
sequence ݅ is given by ݌௜,௥௘௙ while the evaluation 
probability of test sequence ݅ obtained from a model 
trained with ݊ training samples is given by ݌௜,௡. The 
development of this error value with increasing training 
data amount is presented in Figure 5.  
 The first observation is that increasing the training 
data amount decreases the error and therefore increases 
the quality of the model, which is a necessary feature of 
a training approach. Because of the stochastic nature of 
the training data this decrease is not smooth for little 
training data. The effect is more smooth when more 
training date is available, which suggests that a 
minimum amount of training data needs to be available 
to obtain useful results. 
 The error decreases faster when training normal 
distributions, since the data was generated using a 
model with normal distributions. The models containing 
kernel estimations of the distributions retain a 
significantly higher error in the evaluation probability 
with the same amount of training data. 
 

 
Figure 5: Mean relative difference of evaluation 
probabilities depending on training data amount 
 

5.2. Non-Parametric Motion Sensor Example 
In real applications, data is often assumed to meet a 
parametric distribution. But that is not always the case. 
Therefore, a second experiment was performed using a 
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model with more complex distributions. The example is 
a very simple motion sensor in a movable utility (e.g. 
game pad of a games console, pen or wiper on smart 
board). The task of the model would be to distinguish 
between deliberate movements the user and random 
influences on the utility such as jitter, jolting or draft. 

The given system structure is very simple as shown 
in Figure 6 in the form of an ASPN. The two places of 
the ASPN represent the states Idle and Busy. Idle 
meaning that the utility is not in motion and Busy 
meaning that it is being used, and the corresponding 
motions should be registered. A speed threshold has 
been defined in order to distinguish between deliberate 
movements and random influences. The transitions 
between the states should cause the speed value to rise 
above (Begin Moving) or fall below (Seize Moving) the 
given threshold. 

To emulate non-parametric data, transition Begin 
Moving has a firing time that is a combination of two 
normal distributions, N(60,10) and N(75,15), where a 
random process picks each of the distributions with 
equal probability and then samples that one. The firing 
time of transition Seize Moving is a convolution of a 
normal distribution and an exponential distribution, 
N(4,0.5) and Exp(0.5). 

 

 
Figure 6: Augmented stochastic Petri net of non-

parametric motion sensor model 
 
 For this model, training sequences of different 
length were generated using a discrete event-based 
simulation (20, 50, 100, 200, 500, 1,000, 2,500, 5,000 
and 10,000 fire times for each transition). Additionally, 
ten test sequences were generated. As reference values 
for the evaluation probabilities the results of a model 
trained with almost 14000 items of data were used, 
because the non-parametric distributions could not be 
used directly in the analysis method. A generation of 
training sequences from a real motion sensor would 
require the users to indicate the start and end of 
deliberate movements e.g. by pressing a button on the 
game pad. 
 As estimate of the quality of the trained model, we 
again computed the mean relative error for different 
amounts of training data using Equation (2). The 
development of the error for the trained models 
containing kernel estimations as distributions is shown 
in Figure 7. It contains the mean error value as well as 
the maximum and minimum value obtained of the ten 
test sequences. The error development using parametric 
estimators can be seen in Figure 8 using a different 
scale than in the non-parametric case. 

 

 
Figure 7: Error of evaluation probabilities depending on 

training data amount for non-parametric estimator 
 

 
Figure 8: Error of evaluation probabilities depending on 

training data amount for parametric estimator 
 
 The error using the parametric estimator does not 
decrease significantly with increasing training data 
amount, while the non-parametric estimator performs 
significantly better. This is to be expected, since the 
original distributions were designed not to fit a known 
distribution function. 
 Maybe a more complicated parametric approach 
could explain the data better than the here estimated 
Erlang distribution for T1 and lognormal distribution 
for T2, but that was not within the scope of the 
experiment. 

 
5.3. Experiment Discussion 
The experiments show that a supervised training of 
Hidden non-Markovian Models is possible, and that the 
approach is capable of training parametric and non-
parametric distributions. The quality of the trained 
models, in terms of difference in evaluation probability 
to a reference model, increases with increasing training 
data amount, when a certain minimal amount of data is 
available. 
 It becomes clear that parametric estimation yields 
better results even with little training data if the original 
data corresponds to a known distribution function. If 
this is not the case, a non-parametric estimator is a good 
choice because it always tends to the original data 
distribution given enough training examples. 
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6. CONCLUSION 
This paper presented a supervised training approach for 
Hidden non-Markovian Models. Even though it is based 
on existing methods, only their combination leads to a 
first successful attempt to train Hidden non-Markovian 
Model. Experiments showed that this approach is able 
to minimize the gap between the source system and the 
trained model if the model structure is sufficient to map 
this system and enough training data is available.  
 The method to collect firing times of specific 
transitions is applicable to any augmented stochastic 
Petri net described as above. Parametric and non-
parametric estimators are capable of approximating 
arbitrary data distributions. If the data fits to a 
parametric distribution the corresponding estimators 
reach that goal much faster than the non-parametric 
ones, although the latter approach is more general. 
 Disadvantages of the approach arise from the 
preconditions. An augmented Petri net fully specified in 
its structure is needed, otherwise the method to collect 
firing times cannot be applied. In addition to that this 
supervised approach also needs information on which 
transition has fired for each protocol entry. That means 
that the unobservable system part must be observable 
for the generation of training data. This might be a key 
problem for the applicability of the approach. However, 
in the case of gesture recognition within the approach of 
Bosse et. al (2011), it can be applied. For that purpose, 
users will need to mark their sequence of data generated 
from movements with the desired gesture phases.  
 In future work the approach should be applied to 
real gesture recognition with Hidden non-Markovian 
Models. This task involves scenarios with several users 
to collect training data from their specific gesticulation.  
Later on the users should carry out the defined gestures 
to see if the recognition rate increases through training. 
 A second opportunity of research is the 
applicability of the approach to so-called normal 
HnMMs in which not every transition does emit a 
symbol. That means the current state of the HnMM 
respectively the current marking of the Petri net when 
generating the firing times may be non-deterministic.  
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