
SUPERVISED TRAINING OF CONVERSIVE HIDDEN NON-MARKOVIAN MODELS:
INCREASING USABILITY FOR GESTURE RECOGNITION

Sascha Bosse(a), Claudia Krull(b), Graham Horton(c)

(a)(b)(c) Otto-von-Guericke-University Magdeburg
P.O. Box 4120

39016 Magdeburg, Germany

(a)sascha.bosse@ovgu.de, (b)claudia.krull@ovgu.de, (c)graham.horton@ovgu.de

ABSTRACT
Hidden non-Markovian Models (HnMMs) were
introduced and formalized as an extension of Hidden
Markov Models for the analysis of partially observable
stochastic processes. Their main advantage over HMM
is the possibility to model arbitrary distributions for
state transition duration, so that the unobservable
stochastic process needs not to be Markovian. Besides
academic examples, HnMMs were applied to gesture
recognition and performed well in distinguishing
similar gestures with different execution speeds. While
the Proxel-Method enabled the evaluation for arbitrary
HnMMs, there was no opportunity to train these
models. Therefore, the models for different gestures had
to be parameterized manually. This fact reduced the
applicability in real gesture recognition dramatically.
This paper presents a solution to this problem,
introducing a supervised training approach that
increases the applicability of HnMMs in gesture
recognition.

1. INTRODUCTION
Hidden non-Markovian Models (HnMMs) were
introduced and formalized by Krull and Horton (2009)
as an extension of Hidden Markov Models for the
analysis of partially observable stochastic processes.
Their main advantage over HMM is the possibility to
model arbitrary distributions for state transition
durations, so that the unobservable stochastic process
needs not to be Markovian.
 Besides academic examples (e.g. Buchholz et. al
2010; Krull et. al 2010), HnMMs were applied to
gesture recognition and performed well in
distinguishing similar gestures with different execution
speeds (Bosse et al. 2011). For that purpose, significant
changes in gesture acceleration were logged while
execution and the likelihood of different HnMMs to
generate such a sequence was computed. The model
with the highest value in this evaluation task represents
the recognized gesture.
 While the Proxel-Method developed by Horton
(2002) enabled the evaluation for arbitrary HnMMs,
there was no opportunity to train these models
automatically. Therefore, the models for different
gestures had to be parameterized manually. This fact

reduced the applicability in real gesture recognition
dramatically.
 This paper has the goal to present a solution to this
problem, introducing a supervised training approach
that increases the applicability of HnMMs in particular
in gesture recognition, but also in other application
areas where a fully specified model of the hidden
system is not readily available.

The next section will review some existing training
methods of related paradigms and introduce HnMMs.
The third section describes the steps of the training
approach and the fourth section comments on
implementation details. The experiments section
contains two test cases. The paper is concluded by the
sixth section, which evaluates the approach presented
and highlights some areas future work.

2. RELATED WORK
Training a mathematical model to increase its
applicability is a well addressed problem in Machine
Learning. There are two basic forms of Machine
Learning: Supervised and unsupervised learning. In
supervised learning input and desired output data is
used, so that the model can learn the relationship
between them (e.g. Classification). In unsupervised
learning, no output data is given and the model has to
describe the distribution of the data (e.g. Clustering)
(Marsland 2009).
 For Hidden Markov Models there exist well known
unsupervised training algorithms, like Baum-Welch-
and Viterbi-Training (Fink 2008). These methods are
iterative and guarantee a greater or equal likelihood of
the model after each iteration. Buchholz (2012) adapted
the Baum-Welch-Algorithm to a subclass of HnMMs
also used in gesture recognition, but there is still
missing a concept to train arbitrarily distributed state
transition durations.
 On the other hand, approaches for supervised
training of Hidden Markov Models like (Mamitsuka
1998) were developed to train the evaluation probability
to a specific target value. An algorithm that trains a
Hidden Markov Model from sequences with desired
states could not be found in literature, probably because
the computation of transition and output probabilities
would be trivial in that case.

Proceedings of the International Conference on Modeling and Applied Simulation, 2012
978-88-97999-10-2; Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 106

 For the problem of gesture recognition addressed in
(Bosse et. al 2011) none of these approaches is suitable
in general. Because semantic information is encoded in
the model, a training method must respect this and may
not change the basic structure of the model. Because of
this fact, the current state of the underlying model
should be computed from training data, so that the
training method can respect the semantics of the model.

2.1. Hidden non-Markovian Models
An HnMM after Krull and Horton (2009) consists of a
state space with transitions between the states that are
time-dependent. In a specific case of HnMMs (Eall),
every transition must emit a symbol when it fires.
Buchholz (2012) named this subclass Conversive
HnMM and developed algorithms for all relevant
problems. CHnMM assign every transition with a
discrete random variable that indicates what emission
probability each output symbol has. In addition, a
distribution of the initial probability of each state is
given.
 The evaluation task of CHnMM is solved by an
approach very similar to the Forward Algorithm from
HMM (Buchholz 2012). This algorithm requires a
completely defined system description, including the
continuous distributions of transition firing times and
discrete distributions for symbol emissions. These
distributions must be provided by a training algorithm.
 The state space of an HnMM can be computed
from arbitrary models that represent discrete stochastic
processes. Furthermore, the state space of a model does
not need to be computed a-priori, so the training
algorithm can parameterize a discrete stochastic model
to avoid problems like state space explosion. In this
work, augmented stochastic Petri nets are used as the
user model.

2.2. Augmented Stochastic Petri Nets
Krull (2009) defines Stochastic Petri Nets as a 7-tuple

. is the set of places, a set of
transitions and a set of arcs between places and
transitions. must form a bipartite graph. is a
set of so called inhibitor arcs while is a function that
assigns integer values to each type of arc. is the
initial marking of all places and can assign a so called
guard function to each transition that indicates whether
a transition is activated or deactivated for a specific
marking.

A transition is activated if and only if every place
connected to this transition has at least the number of
tokens the connecting input arcs are assigned, no source
of an inhibitor arc to this transition has at least the
specified number of tokens and the corresponding guard
function of this transition evaluates to true in the current
marking. After a randomly distributed amount of time,
the transition fires, deleting the required tokens and
creating tokens in the places the transition is connected
to. If another activated transition fires before that time
and the new marking disables the transition, there are
two policies: If the transition is marked as “Race Age”,

the transition saves the remaining firing time and
resumes the countdown when it is active again. With the
policy “Race Enabled” the whole activation time is
deleted and upon re-enabling, the firing distribution is
sampled again.

Buchholz (2012) defines augmented stochastic
Petri nets. Here each transition is augmented by the
symbol emissions it can produce with probabilities for
each possible symbol. The state space of such an ASPN
is an HnMM. ASPN can be considered the user model
corresponding to the computational model HnMM.

2.3. Example System Description
The current paper is illustrated using an example first
defined by Buchholz et. al (2010). Two machines
process products in randomly distributed intervals.
These products are tested after both machine results are
joined. The tester produces a protocol with test
timestamp and state of the product (OK or Defect).
Figure 1 illustrates the system and shows an example of
such a system protocol.

Figure 1: Schematic of tester example

 This system can be converted into the augmented
stochastic Petri net (Buchholz 2012) shown in Figure 2.
The ASPN represents the system as a stochastic Petri
net with output symbols representing the tester results
attached to the state transitions.

Figure 2: Augmented stochastic Petri net of the tester

example

Proceedings of the International Conference on Modeling and Applied Simulation, 2012
978-88-97999-10-2; Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 107

Figure 3: Example protocol of the tester system

 The protocol produced by the tester (see Figure 3
for an example) does not contain information on the
machine that processed a particular product, e.g.
produced a certain defective item. Therefore, this part of
the model can be considered unobservable. The task to
be solved using HnMM is therefore to reassign the
different protocol entries to the machines, thereby
determining the sources of defective items.

3. APPROACH
The goal of the desired approach is a supervised
training of a Hidden non-Markovian Model to improve
the recognition accuracy for a given real system. For
that purpose, the hidden discrete model must be adapted
by using training data that contains more information
than the data from the real system to be reconstructed
later on. A second property of the approach should be
that the trained model gets nearer to the original with
increasing training data amount.

3.1. Preconditions
A symbol sequence entry of an HnMM consists of two
parts: timestamp and symbol. For training purposes,
those sequence entries are annotated with the transition
that generated the symbol emission as shown in Figure
4. The user model to be trained is an ASPN with a
known structure. The model parameters that will be
trained are the continuous distribution functions of the
timed transition and the corresponding symbol output
probabilities. An initial state probability distribution
will also be determined. This corresponds to parametric
training.

Figure 4: Annotated example trace of the tester system

 Two main tasks can be identified to solve this
problem: Firstly, for every transition samples of the
firing time must be computed from the annotated
symbol sequence and secondly, the distribution must be
estimated from these firing time samples.

3.2. Computation of firing time samples
For every event in the protocol at time representing a
firing transition, the corresponding firing time can be
computed in the following way:

 (1)

That means the relative firing tfire time is the difference
between the timestamp of the firing t and the time when
the transition was last activated tact. is the current age
of the transition which is not equal to zero if the
transition is race age and was activated before but did
not fire. While the timestamp is available of course, the
other two values are not from the protocol itself.
 But they can be computed easily when the protocol
is processed sequentially. Given the initial marking and
the structure of the underlying model, at every
timestamp the marking - depending on the given
transition - is stored. From this marking the activated
transitions can be inferred. For every transition this
activation time and for all race age transitions that are
not longer activated the age, i.e. the difference between
timestamp and last activation time, is stored.
 With this procedure, every entry in the sequence
produces a relative firing time for the given transition,
so that a collection of firing times arises.

3.3. Estimating the Probability Distribution
Estimating a probability distribution from a set of
realizations is a problem well addressed in density
estimation. The methods for this task are divided in
parametric and non-parametric methods (Eggermont
and LaRiccia 2001). The first mentioned is about
estimating the parameters of known distribution types,
the normal distribution for example. If none of these
distributions fits the data, a non-parametric method can
be applied. This can be a simple histogram or the more
complex kernel estimation.

4. IMPLEMENTATION
To test the supervised training, the approach needed to
be implemented. The computation of firing times can be
done with a Petri net simulation providing the following
methods: For a specific marking, a list of active
transitions and for a given transition, a new marking
must be returned. In addition to that, some auxiliary
variables are needed. Besides the current index
corresponding to the processed symbol sequence entry,
the current marking of the Petri net must be saved
(integer array, size). Also for every transition, the
last activation times and the age times must be stored
(float array, size). The latter array can be
minimized, if only race age transitions are considered.

Proceedings of the International Conference on Modeling and Applied Simulation, 2012
978-88-97999-10-2; Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 108

In addition to that, for every transition the symbol
emissions must be counted.
 From the collected data, the distributions must be
computed. The estimation of the discrete probability
distribution of the symbol emissions are easy to
compute. Estimator is the relative frequency of the
symbol emission.
 For the estimation of the continuous probability
distributions of the firing times the kernel estimation
seems to be the most general approach. Although it can
be shown that the error of this method tends to zero
with enough data (Devroye and Lugosi 2001), a
parametric estimation reduces the error much faster
with respect to training data if the true distribution is a
known one. This holds because less information is need
to parameterize a known distribution than an unknown
one.
 Due to these facts, both approaches are considered
in this concrete implementation. Firstly, an optimization
for some known probability densities is carried out.
Minimizing the square error between observed values
and expected values in defined intervals returns the
distribution fitting best.
 If this distribution does not pass a chi-square-test at
a specific significance level (from Banks et. al 2001),
kernel estimation is performed with Gauss kernel and
window size chosen according to Silverman (1998).
 The needed cumulative distribution function is
computed symbolically for the corresponding densities
and through numerical integration for densities without
symbolic integrations and kernel density.
 With the estimated distributions, the augmented
stochastic Petri net can be parameterized and the
CHnMM evaluation algorithm is now able to compute
the evaluation probabilities of other protocol sequences.

5. EXPERIMENTS
To test the developed approach, two experiments are
performed. Since it is not clear yet, how to generate
training data from real systems, training is tested using
two academic models, where a simulation model is
available to generate both training data and test
sequences.
 Therefore we have as reference value to estimate
the quality of the trained models the evaluation
probability of each sequence computed using the actual
generating model. The training approach is successful if
the evaluation probability of the sequence for the
trained model is similar to this reference value. In
particular, the difference between the values should
decrease the more training data is available.
 To illustrate the different effects of parametric and
non-parametric estimation, both approaches are shown
in the experiment results.

The computation time needed for extracting and
finding the distributions from the data, as well as the
runtime of the evaluation task were both under one
minute and are therefore not considered in this paper.

5.1. Tester Example
The first experiment is carried out using the tester
example system described in Section 2.3. For training
purposes, augmented training protocols of different
lengths were generated (20, 50, 100, 200, 500, 1,000,
2,500 and 10,000 entries for each transition). One
model is trained using kernel estimation, and the
parametric training is performed using normal
distributions.
 Then for ten different protocols, the evaluation
probability of the protocol given the trained model is
computed. Reference evaluation probabilities are
computed using the CHnMM of the generating model.
The mean relative difference (can also be interpreted as
the error) of the trained model probabilities and the
reference values using a particular amount of training
data was computed using Equation (2).

௡തതതതതതݎݎܧ ൌ ଵ
ଵ଴
∑ |௣೔,೙ି௣೔,ೝ೐೑|

௣೔,ೝ೐೑
ଵ଴
௜ୀଵ (2)

 The reference evaluation probability of test
sequence ݅ is given by ݌௜,௥௘௙ while the evaluation
probability of test sequence ݅ obtained from a model
trained with ݊ training samples is given by ݌௜,௡. The
development of this error value with increasing training
data amount is presented in Figure 5.
 The first observation is that increasing the training
data amount decreases the error and therefore increases
the quality of the model, which is a necessary feature of
a training approach. Because of the stochastic nature of
the training data this decrease is not smooth for little
training data. The effect is more smooth when more
training date is available, which suggests that a
minimum amount of training data needs to be available
to obtain useful results.
 The error decreases faster when training normal
distributions, since the data was generated using a
model with normal distributions. The models containing
kernel estimations of the distributions retain a
significantly higher error in the evaluation probability
with the same amount of training data.

Figure 5: Mean relative difference of evaluation
probabilities depending on training data amount

5.2. Non-Parametric Motion Sensor Example
In real applications, data is often assumed to meet a
parametric distribution. But that is not always the case.
Therefore, a second experiment was performed using a

Proceedings of the International Conference on Modeling and Applied Simulation, 2012
978-88-97999-10-2; Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 109

model with more complex distributions. The example is
a very simple motion sensor in a movable utility (e.g.
game pad of a games console, pen or wiper on smart
board). The task of the model would be to distinguish
between deliberate movements the user and random
influences on the utility such as jitter, jolting or draft.

The given system structure is very simple as shown
in Figure 6 in the form of an ASPN. The two places of
the ASPN represent the states Idle and Busy. Idle
meaning that the utility is not in motion and Busy
meaning that it is being used, and the corresponding
motions should be registered. A speed threshold has
been defined in order to distinguish between deliberate
movements and random influences. The transitions
between the states should cause the speed value to rise
above (Begin Moving) or fall below (Seize Moving) the
given threshold.

To emulate non-parametric data, transition Begin
Moving has a firing time that is a combination of two
normal distributions, N(60,10) and N(75,15), where a
random process picks each of the distributions with
equal probability and then samples that one. The firing
time of transition Seize Moving is a convolution of a
normal distribution and an exponential distribution,
N(4,0.5) and Exp(0.5).

Figure 6: Augmented stochastic Petri net of non-

parametric motion sensor model

 For this model, training sequences of different
length were generated using a discrete event-based
simulation (20, 50, 100, 200, 500, 1,000, 2,500, 5,000
and 10,000 fire times for each transition). Additionally,
ten test sequences were generated. As reference values
for the evaluation probabilities the results of a model
trained with almost 14000 items of data were used,
because the non-parametric distributions could not be
used directly in the analysis method. A generation of
training sequences from a real motion sensor would
require the users to indicate the start and end of
deliberate movements e.g. by pressing a button on the
game pad.
 As estimate of the quality of the trained model, we
again computed the mean relative error for different
amounts of training data using Equation (2). The
development of the error for the trained models
containing kernel estimations as distributions is shown
in Figure 7. It contains the mean error value as well as
the maximum and minimum value obtained of the ten
test sequences. The error development using parametric
estimators can be seen in Figure 8 using a different
scale than in the non-parametric case.

Figure 7: Error of evaluation probabilities depending on

training data amount for non-parametric estimator

Figure 8: Error of evaluation probabilities depending on

training data amount for parametric estimator

 The error using the parametric estimator does not
decrease significantly with increasing training data
amount, while the non-parametric estimator performs
significantly better. This is to be expected, since the
original distributions were designed not to fit a known
distribution function.
 Maybe a more complicated parametric approach
could explain the data better than the here estimated
Erlang distribution for T1 and lognormal distribution
for T2, but that was not within the scope of the
experiment.

5.3. Experiment Discussion
The experiments show that a supervised training of
Hidden non-Markovian Models is possible, and that the
approach is capable of training parametric and non-
parametric distributions. The quality of the trained
models, in terms of difference in evaluation probability
to a reference model, increases with increasing training
data amount, when a certain minimal amount of data is
available.
 It becomes clear that parametric estimation yields
better results even with little training data if the original
data corresponds to a known distribution function. If
this is not the case, a non-parametric estimator is a good
choice because it always tends to the original data
distribution given enough training examples.

Proceedings of the International Conference on Modeling and Applied Simulation, 2012
978-88-97999-10-2; Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 110

6. CONCLUSION
This paper presented a supervised training approach for
Hidden non-Markovian Models. Even though it is based
on existing methods, only their combination leads to a
first successful attempt to train Hidden non-Markovian
Model. Experiments showed that this approach is able
to minimize the gap between the source system and the
trained model if the model structure is sufficient to map
this system and enough training data is available.
 The method to collect firing times of specific
transitions is applicable to any augmented stochastic
Petri net described as above. Parametric and non-
parametric estimators are capable of approximating
arbitrary data distributions. If the data fits to a
parametric distribution the corresponding estimators
reach that goal much faster than the non-parametric
ones, although the latter approach is more general.
 Disadvantages of the approach arise from the
preconditions. An augmented Petri net fully specified in
its structure is needed, otherwise the method to collect
firing times cannot be applied. In addition to that this
supervised approach also needs information on which
transition has fired for each protocol entry. That means
that the unobservable system part must be observable
for the generation of training data. This might be a key
problem for the applicability of the approach. However,
in the case of gesture recognition within the approach of
Bosse et. al (2011), it can be applied. For that purpose,
users will need to mark their sequence of data generated
from movements with the desired gesture phases.
 In future work the approach should be applied to
real gesture recognition with Hidden non-Markovian
Models. This task involves scenarios with several users
to collect training data from their specific gesticulation.
Later on the users should carry out the defined gestures
to see if the recognition rate increases through training.
 A second opportunity of research is the
applicability of the approach to so-called normal
HnMMs in which not every transition does emit a
symbol. That means the current state of the HnMM
respectively the current marking of the Petri net when
generating the firing times may be non-deterministic.

REFERENCES
Banks, J., Carson, J.S. II, Nelson, B.L., Nicol, D.M.,

2001. Discrete-Event System Simulation. Upper
Saddle River, NJ: Prentice-Hall

Bosse, S., Krull, C., Horton, G., 2011. MODELING OF
GESTURES WITH DIFFERING EXECUTION
SPEEDS: Are Hidden non-Markovian Models
Applicable for Gesture Recognition, 10th
International Conference on Modelling & Applied
Simulation (MAS). September 2011, Rome, Italy.

Buchholz, R., Krull, C., Strigl, T., Horton, G., 2010.
Using Hidden non-Markovian Models to
Reconstruct System Behavior in Partially-
Observable Systems, 3rd International Conference
on Simulation Tools and Techniques, March 2010,
Torremonlinos, Spain.

Buchholz, R., 2012. Conversive Hidden non-Markovian
Models. Doctoral Thesis, Otto-von-Guericke-
University Magdeburg, Germany.

Devroye, L, Lugosi, G., 2001. Combinatorial Methods
in Density Estimation. New York: Springer-
Verlag.

Eggermont, P.P.B., LaRiccia, V.N, 2001. Maximum
Penalized Likelihood Estimation. New York:
Springer-Verlag.

Fink, G.A., 2008. Markov Models for Pattern
Recognition. Berlin: Springer-Verlag

Horton, G., 2002. A new Paradigm for the Numerical
Simulation of Stochastic Petri Nets with General
Firing Times, 14th European Simulation
Symposium. October 2002, Dresden, Germany.

Krull, C., 2008. Discrete-Time Markov Chains:
Advanced Applications in Simulation. Doctoral
Thesis, Otto-von-Guericke-University Magdeburg,
Germany.

Krull, C., Horton, G., 2009. HIDDEN NON-
MARKOVIAN MODELS: FORMALIZATION
AND SOLUTION APPROACHES, 6th Vienna
International Conference on Mathematical
Modeling. February 2009, Vienna, Austria.

Krull, C., Buchholz, R., Horton, G., 2010. MATCHING
HIDDEN NON-MARKOVIAN MODELS:
DIAGNOSING ILLNESSES BASED ON
RECORDED SYMPTOMS, 24th European
Simulation and Modeling Conference, October
2010, Hasselt, Belgium.

Mamitsuka, H., 1998. Predictiong Peptides that bind to
MHC molecules using Supervised Learning of
Hidden Markov Models, PROTEINS: Structure,
Function and Genetics, Vol. 33, 460-474

Marsland, S., 2009. Machine Learning: An Algorithmic
Perspective. Boca Raton, FL: CRC Press

Silverman, B.W., 1998. DENSITY ESTIMATION FOR
STATISTICS AND DATA ANALYSIS,
Monographs on Statistics and Applied Probabilty.
London: Chapman and Hall.

Wickborn, F., Horton, G., Heller, S., Engelhard, F.,
2005. A General-Purpose Proxel Simulator for an
Industrial Software Tool, 18th Symposium of
Simulation Techniques. September 2005,
Erlangen, Germany

Proceedings of the International Conference on Modeling and Applied Simulation, 2012
978-88-97999-10-2; Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds. 111

