
A STUDY OF DEVS-BASED PROCESS SCHEDULING ON MULTI-USER
SEMICONDUCTOR TEST EQUIPMENT

Soonchul Lim(a),(b), Youngsin Han(a), Chilgee Lee(a)

(a) College of Information and Communication Engineering, Sungkyunkwan University
(b) Development and Evaluation Group, Memory Business, Samsung Electronics

(a)scandth1@naver.com, yshan@skku.edu, cslee@skku.edu

ABSTRACT
Single processor semiconductor test equipment
inevitably experiences idle time between tests. This idle
time is increased when multiple operators use the same
equipment. An increase in idle time is considered a loss
factor and produces low equipment efficiency; therefore,
it is important to decrease it. In this paper, we offer two
methods to effectively decrease idle time in multi-user
test equipment. The methods proposed here were
developed using an atomic model and were coupled
with discrete event system specification methodology.
Features of our model include idle time that can be
decreased more than the typical sequence and
equipment status that can be monitored beforehand
without adding extra time.

Keywords: equipment efficiency, idle time, process
scheduling, DEVS

1. INTRODUCTION
The market for semiconductor memory devices is
rapidly changing. The demand for desktop PC memory
is stable or slightly decreasing, but the demand for
memory for mobile devices is rapidly increasing. These
changes require an increased investment and reduce the
life of certain equipment. The effective use of limited
resources is essential in the semiconductor industry,
which already requires heavy investment.
Equipment efficiency can be expressed numerically and
most manufacturing processes apply various methods to
increase equipment efficiency. Semiconductor test
equipment is used to screen devices and evaluate their
characteristics. Test equipment efficiency needs to be
improved by optimizing test items, decreasing test times,
and reducing unnecessary idle time. Overall equipment
efficiency (OEE) is one of the methods used to illustrate
how effectively equipment and resources are utilized.
The overall performance of a piece of equipment or a
factory is always governed by the cumulative impact of
three OEE factors: availability, performance rate, and
quality rate (A.J. De, Ron, 2006). The OEE is defined
as:

)(%)(%)(%% QualityePerformanctyAvailabiliOEE ××= (1)
Our proposal relates to the availability of the OEE
factors.

2. BACKGROUND AND METHODOLOGY

2.1. Background
The test equipment process sequence applied by
multiple users is expressed as shown in Figure 1. User A,
occupying the test processor, needs idle time (I1) to set
up the test environment. After the test program is
executed, idle time (I2) is generated from the end of the
program, or by user interruption, before starting the next
program. After user A completes the procedure on the
test processor, idle time (I3) is generated until user B
occupies the test processor. The process sequence
hereafter is identical to the previously described
sequence of user A. Thus, idle time (Itp) between users
occupying the test processor and idle time (Is) between
the test programs, are generated. The total idle time is
defined by the formula below:

∑ ∑+= stptotal III (2)
The total idle time is one of the loss items in an
availability factor; the higher the total idle time, the
lower the system’s efficiency. Process scheduling is a
method used to decrease the waiting time and a
common representation of process scheduling is a
queuing system (Silberschatz and Galvin, 1994; Hopp,
2008). We propose the queuing system using discrete
event system specification (DEVS) methodology to
minimize the total idle time on multi-user equipment.

Figure 1: Typical sequence for multi-user equipment

2.2. Methodology
The DEVS is a modeling methodology used in a system
that operates discrete events in linear time (Hill, 1996).
This methodology is based on a set theory to extract the
structure and behaviors of the model. It is easily
expressed in hierarchical and modular systems. To

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

141

mailto:scandth1@naver.com
mailto:yshan@skku.edu
mailto:cslee@skku.edu

provide these features, a DEVS has an atomic model
and a coupled model. An atomic model (M) is organized
to express the dynamic characteristic, as follows:

M = < X, Y, S, δext, δint, λ, ta >
The coupled model (CM) expresses the interaction
between the components of the system and the
hierarchical structure of the system, as follows:

CM = < X, Y, M, EIC, EOC, IC, SELECT >
Detailed descriptions and modeling methods of DEVS
can be found in Zeigler, Praehofer and Kim (2000),
Kim (2007), and Han and Song (2012).

3. SYSTEM MODELING
We propose a queuing system that consists of the
InQueue model, the processor model, and the
InQueuehandler model using the DEVS to produce a
system with minimal idle time.

3.1. InQueue model
A state diagram of the InQueue model is shown in
Figure 2. There are three input messages and two output
messages. The initial state of the InQueue model is the
WaitForPgm state with a time of infinity. The InQueue
model accumulates the program in a queue if receiving
a PgmRaw message. The model produces PgmRaw and
Qval messages if receiving ReqPgmRaw and ReqQval
messages, respectively.

Figure 2: State diagram for the InQueue model

3.2. Processor model
The processor model’s behavior is depicted in Figure 3.
The processor model has two states, with an input
message and an output message. The initial state of the
processor model is the WaitForPgm with infinity time.
If receiving a PgmRaw message, the state of the model
is changed to BUSY which has a random ta. After
executing the PgmRaw, the model generates a TestDat
message and returns to its initial state.

Figure 3: State diagram for the processor model

3.3. InQueuehandler model
A state diagram for the InQueuehandler model is
provided in Figure 4. In the figure, there are three input
messages and four output messages. The model has a
WaitForQval state with infinity time at the initial state.

If Qval is not 0, the model moves to the CheckTP state.
If the test processor state is free, the model goes to the
ReqForPgmRaw state. If it is not free, the model goes to
the ReqForPreemptiveTP state and waits until the
specified time. A ReqForPgmRaw message is produced
and the state of the model is changed to
WaitForPgmRaw. When receiving a GetPgmRaw
message, the model goes to the SendPgmRaw state and
immediately produces a SendPgmRaw message.
Subsequently, the model goes to WaitForProcessDone
with infinity time. After receiving the GetDoneSig
message, the state of the model is changed to
SendDoneSig state and the model generates a
SendPgmRaw message. The CheckInQ state produces a
Qval message and the model returns to the WaitForQval
state.

Figure 4: State diagram for the InQueuehandler model

3.4. Coupled model
Figure 5 represents the overall coupled model of the
queuing system to apply idle time to the effective
process. This coupled model consists of three atomic
models and combines the InQueue, processor, and
InQueuehandler models. In the InQueuehandler, the
WaitForPgmRaw state changes to the SendPgmRaw
state when receiving PgmRaw from the inGetPgmRaw
port. PgmRaw is transferred from the InQueuehandler
output port to the processor model and the Qval is
changed. The inputted PgmRaw is executed by the
defined environment process and the model produces
TestDat messages for the user that initially provided the
PgmRaw to the InQueue model.

Figure 5: Overall view of the coupled model

4. RESULTS

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

142

4.1. Queuing system using the DEVS
Our queuing system using the DEVS is shown in Figure
6. This method can be executed without the loss of time.
The upper sequence in Figure 6 is a typical user
sequence (A, B, C); it is necessary for each user to
occupy the test processor. In Figure 1, as described
above, idle time (I1 ~ I4) occurs due to latency times
(Itp and Is). The queuing system using the DEVS is
executed with non-preemptive processes, as in the lower
sequence in Figure 6. This method has features for
minimizing Itp and Is; however, it has an assumption
that requires the same hardware infrastructure for proc1,
proc2, and proc3. In the experimental results, as shown
in Figure 7, this method works more efficiently for
multi-user equipment than the previous process, but the
data for the single-user equipment does not seem to be
effective.

Figure 6: Queue process using the DEVS

Figure 7: Comparison of the idle time

4.2. Self-diagnostic process using the DEVS
The upper image in Figure 8 shows a typical sequence.
Idle time occurs between the test programs. The length
of idle time is different according to the type of work
the user is performing. The lower image in Figure 8
shows our method with a self-diagnostic process,
applying a preemptive process to the user’s idle time. If
the idle time (I3) exceeds the limited time defined by
the system user, the user’s test processor is terminated
and changed to the system user. Subsequently, a self-
diagnostic process (SDP) is executed by the queuing
system. For effective execution, the running time of the
SDP should be considered, depending on the type of
work. Once the SDP ends, the test processor is free for
the next user’s process.

Figure 8: Self-diagnostic process using the DEVS

5. CONCLUSION
Using limited resources and minimizing loss of time are
important factors in test equipment efficiency. In this
paper, we proposed two methods to effectively utilize
idle time during test processes. One of the proposals is a
queuing system with non-preemptive scheduling to
minimize idle time on multi-user equipment. The other
is a self-diagnostic process with preemptive scheduling,
applying the user’s idle time. As shown in the results,
idle time using the DEVS-based queuing system is
effective for multi-user equipment but its effectiveness
in single-user systems is negligible. We also confirmed
that self-diagnostic processes with the DEVS, applying
the user’s idle time, is available for such systems.

REFERENCES
A.J.De, Ron, 2006. OEE and Equipment effectiveness:

an evaluation. International journal of production
Research, Vol 44, No. 23, 4987-5003.

Avi Silberschatz, Peter Galvin, 1994. Operaing system
(8th Edition), Addison-Wesley.

Wallace J. Hopp, 2008. Single server queuing models.
International Series in Operations Research &
Management Scienceh, Vol 115, pp 51-79.

David R. Hill, 1996. Object-Oriented Analysis and
Simulation. Addison-Wesley

Bernard P. Zeigler, Herbert Praehofer and Tag Gon Kim,
2000. Theory of Modeling and Simulation (2nd
Edition), Academic Press.

Tag Gon Kim, 2007. EE612 Lecture Note, EECS,
KAIST, http://smslab.kaist.ac.kr/Course/EE612/.

Tag Gon Kim, 2007 DEVSim++ User’s
Manual, http://smslab.kaist.ac.kr

Youngsin Han, Hae Sang Song, 2011. Co-modeling
Methodology for Semiconductor Manufacturing
and Automobile. Communications in Computer
and Information Science, Vol 341, pp 7-14

Proceedings of the International Conference on Modeling and Applied Simulation, 2013
978-88-97999-23-2 Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.

143

http://smslab.kaist.ac.kr/Course/EE612/
http://smslab.kaist.ac.kr/

