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ABSTRACT 
This paper solves the hybrid flow shop (HFS) 
scheduling problem of a printed circuit board assembly. 
The production system investigated consists of four 
Surface-Mount Device (SMD) placement machines in 
the first production stage and five Automated Optical 
Inspection (AOI) machines in the second production 
stage. The objective is to minimize the makespan and to 
minimize the total tardiness. This paper describes and 
compares four approaches to solve the HFS scheduling 
problem: an integrated simulation-based optimization 
(ISBO) and three metaheuristics, simulated annealing, 
tabu search and genetic algorithm. All approaches lead 
to an improvement in terms of producing more jobs on 
time while minimizing the makespan compared to the 
decision rules used so far in the analyzed printed circuit 
board assembly. The integrated simulation-based 
optimization delivers results much faster than the 
metaheuristics. The metaheuristics lead to slightly better 
results in terms of total tardiness. 
 
Keywords: Simulation-based optimization, hybrid flow 
scheduling problem, simulated annealing, tabu search, 
genetic algorithm, Meta-heuristics  

 
1. INTRODUCTION 
This paper describes the solution of a hybrid flow shop 
(HFS) scheduling problem with major and minor 
sequence-dependent setup times based on an industrial 
case of a printed circuit board (PCB) assembly. The 
objective was to minimize the makespan and the total 
tardiness. This paper is an extension and further 
analysis of the work of the authors, which will be 
presented in the Winter Simulation Conference 2016. 
An HFS production environment consists of k  
production stages in series. Each production stage 
comprises m  identical parallel machines. Each job j  
has to be processed on each production stage on one of 
the identical machines (Pinedo 2012). This problem is 
NP-hard (Lenstra et al. 1977). The paper proposes four 
different solutions to this HFS problem: an integrated 
simulation-based optimization algorithm (ISBO) 
developed by the authors and three widely used 

metaheuristics, simulated annealing, tabu search and 
genetic algorithm. 
Scheduling is the deployment of resources in order to 
complete a set of tasks during a determined time span 
(Baker and Trietsch 2009). Scheduling problems have 
been extensively investigated in different fields of 
academia due to its essential role in manufacturing 
environments and different service sectors (Ruiz and 
Vázquez-Rodríguez 2010). Efficient allocation of 
resources supported by the appropriate sequencing is 
considered to be a major mathematical optimization 
problem (Lenstra et al. 1977). Johnson (1954) presented 
an optimal schedule for the two machine flow shop with 
sequence-dependent setup times, which is not as 
complex as an HFS problem. Direct optimization 
approaches have been previously implemented to solve 
HFS problems. Wittrock (1990) adopted a branch and 
bound algorithm to address the problem of identical 
parallel machines with major and minor sequence-
dependent setup times, which can be considered as a 
simplified form of an HFS, and reported a near optimal 
solution. The branch and bound approach requires long 
computational time, even for small instances. Dynamic 
programming represents another direct optimization 
approach, which can be applied to solve HFS problems 
divided into smaller sub-problems (Baker and Trietsch 
2009). The recursive behaviour of a dynamic 
programming approach facilitates the investigation of 
the whole solution space of a moderate size problem in 
reasonable computational time (Pinedo 2012).  
Heuristics are used to obtain good solutions in 
reasonable computational time when the problem 
domain gets more complex (Allaoui and Artiba 2004). 
Priority Dispatching Rules (PDRs) are widely used in 
practice to define scheduling policies in manufacturing 
environments. PDRs are the simplest form of heuristics 
due to their ease of use and intuitive nature (Andersson 
et al. 2008). Shortest Production Time (SPT) and 
Earliest Due Date (EDD) are typical PDRs. They are 
often implemented to solve problems with a single 
objective function and they lack on solution quality as 
soon as the objective function gets more complex 
(Andersson et al. 2008). More sophisticated heuristics 
are adopted to deal with HFS scheduling problems. Voß 
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(1993) and Gupta (1988) used heuristics based on local 
search algorithms to solve a special case of an HFS with 
exactly one machine on the second stage and with the 
objective to minimize the makespan. This problem is 
still NP-hard (Gupta 1988). Local search algorithms are 
improvement procedures based on an initial feasible 
solution for the problem. They recursively search in the 
neighborhood of the initial solution for a better solution 
until a terminating condition is met. 
Metaheuristics are often used to solve scheduling 
problems and are powerful solution approaches. 
Metaheuristics are guided local search algorithms. They 
are based on local search improvement algorithms and a 
general optimization or control strategy. The control 
strategy is used to guide the local search algorithms 
(Voudouris and Tsang 2003). The idea of metaheuristics 
is motivated by the fact that a local search algorithm 
often only obtains a local optimum from the solution 
space (Ross 2005). Simulated Annealing (Allaoui and 
Artiba 2004; Mirsanei et al. 2011), Tabu Search (Wang 
and Tang 2009) and Genetic algorithm are widely used 
metaheuristics. 

 
2. SYSTEM DESCRIPTION  
Any scheduling problem can be described and 
formulated based on the machine environment and 
configuration α, the job characteristics β and the 
objective function γ (Graham et al. 1979).  

 
2.1. Machine environment and configuration  
The analyzed production system is a hybrid flow shop, 
which consists of two production stages (see Figure 1). 
The first production stage contains four identical 
parallel surface mounting technology (SMT) assembly 
lines. The critical resource in the observed production 
lines is usually the surface mount device (SMD) 
placement machines (Csaszar et al. 2000). 
Consequently, we focused our analysis on the SMD 
placement machines. The second production stage 
contains five identical parallel automated optical 
inspection (AOI) machines. Each job j  has to be 
processed on each production stage on one of the 
identical machines as it is shown in Figure 1. 

 

 
Figure 1: Two stages hybrid flow shop 

 
2.2. Job characteristics   
Jobs of the analyzed HFS scheduling problem can be 
characterized as follows:  

• The number of jobs in a certain time period and the 
number of products per job are known and fix.  

• Part types are very heterogeneous. 
• The family type of a job depends on the used raw 

materials. 
• The processing time smjp ,,  of each job j on the 

machine m  of stage s  is known and fix. 
• The priority of a job represents the delivery date to 

the customer. 
• The sequence-dependent setup time kjs ,  is the time 

to setup the machine when changing from job j  to 
job k . 

• Machine breakdowns are not taken into 
consideration. 

• Buffer size between production stages is unlimited. 

In the first production stage (SMD), jobs are scheduled 
with sequence-dependent major and minor setup times 
on the machines. In the second production stage (AOI), 
jobs are scheduled incurring sequence-independent 
setup times on the machines. The concept of major and 
minor setup time was introduced by Wittrock (1990) as 
well as by So (1990) to describe sequence-dependency. 
As an illustration of this concept, jobs which share 
common raw materials, are grouped into families. On 
the one hand, a minor setup time will be inquired, if the 
machine switches from one part type to another inside 
the same family. On the other hand, a major setup time 
will be inquired, if the machine switches from one part 
type to another from a different family. In the first 
production stage job splitting is not permitted. More 
precisely, a production process of a job, once started, is 
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not allowed to be interrupted for producing another job 
due to the fact that a major setup time is inquired to 
reconfigure the machine. Job splitting is allowed in the 
second production stage. 
 
2.3. Objective functions  
Accomplishing a balance between production system 
efficiency and the job’s due-date is a trade-off decision. 
For this reason, tardiness has been frequently used as a 
major supplementary performance criterion along with 
the makespan (Lenstra et al. 1977). The objective 
functions of the analyzed HFS problem are to minimize 
the makespan MaxC    and the total tardiness .T  The 
makespan is the necessary time to complete all released 
jobs (Wittrock 1990). To minimize MaxC  it is important 
to minimize the number of major setups. Tardiness is 
the difference between the completion time of a job jC  

and its due date jd  as shown in (2). 

njCC j ...,,1maxmax =∀=  (1) 
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3. SOLUTION APPROACHES  
The problem to minimize the makespan of a two stage 
hybrid flow shop is NP-hard (Gupta 1988). The 
development of a polynomial algorithm, which can 
provide an optimal solution in a reasonable time, is 
unlikely possible. Thus, breaking down the problem 
could be the key to obtain a near optimal solution by 
solving smaller sub-problems. It is often easier to solve 
the allocation and the sequencing independently (Baker 
and Trietsch 2009). Initially, jobs are allocated to the 
machines on each production stage. Four single 
machine problems with sequence-dependent setup times 
emerge on the first production stage and five single 
machine problems with sequence-independent setup 
times arise on the second production stage. A heuristic 
and metaheuristics were used to solve the allocation 
problem. A dynamic programming approach was used 

to develop a sequencing algorithm that builds a near 
optimal sequence of jobs on each machine. 
The first solution strategy presented is an integrated 
simulation based optimization (ISBO). The ISBO 
integrates a heuristic and a sequencing algorithm into a 
simulation model. The second, the third and the fourth 
approach use metaheuristics: Simulated Annealing 
(SA), Tabu Search (TS), and Genetic Algorithm (GA) 
respectively. All metaheuristics are combined with a 
sequencing algorithm. Simulation models were used to 
assess the quality of the metaheuristics’ solutions. 
 
3.1. Integrated Simulation Based Optimization 
In the integrated simulation Based Optimization (ISBO) 
(see Figure 2), the simulation is a part of the solution 
rather than an evaluation method for it. The allocation 
and sequencing algorithms are integrated in the 
simulation model. The simulation model was built with 
ExtendSim 9. The discrete-rate and discrete-event 
simulation-libraries were used to implement a hybrid 
mesoscopic simulation approach to avoid a long 
computation time (Reggelin and Tolujew 2011). The 
SMD and AOI production processes are modelled using 
the discrete-rate library. Flow rates differ depending on 
the current part type, being produced by the machines. 
The dispatching and decision making processes are 
modelled using the discrete-event library in order to 
ensure a high level of accuracy. The flow of a job is 
changed to a single object at decision points. When a 
job is released for processing, it is again modelled with 
a flow rate.  
Product families and their jobs are initially allocated to 
the machines before the simulation starts. The shortest 
process time (SPT) discipline determines the initial 
allocation of the product families on the first production 
stage SMD. The earliest due date (EED) discipline 
initially allocates the jobs on the second production 
stage AOI. During the simulation, the interaction 
between the allocation and the sequencing algorithm 
leads to a sustainable production strategy with a near 
optimal sequence being continuously generated on each 
machine. The allocation algorithm ensure a balance of 
the production load between the machines. 

 

 
Figure 2 : Integrated Simulation Based Optimization 
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In order to minimize the makespan, all jobs of a product 
family should ideally be manufactured successively on 
the same SMD machine to avoid major setups. 
However, this would lead to delivery time violations of 
many jobs. The sequencing algorithm operates on two 
levels, the product family level and the job level (see 
Figure 3). On the family level, the smallest family, 
which contains at least one of the highest job priorities 
is chosen. Then, the sequencing algorithm switches to 
the job level. On the job level, the algorithm tends to 
dispatch jobs from the same family according to the 

priority of jobs using the EDD rule. The sequencing 
algorithm keeps operating on the job level until jobs of 
the family are completely produced or a critical point is 
met. The critical point describes a situation, when it is 
no longer possible to produce a job from the same 
product family without violating the delivery date of 
other jobs from different families. Choosing the 
smallest family increases the chance that the chosen 
family is completely produced before reaching a critical 
point. This behavior avoids a later major setup. 

 

 
Figure 3: Sequencing Algorithm  

 
The allocation algorithm tries to sustain a balance of the 
production load between the machines on each 
production stage. It performs two types of allocation, 
event-based allocation and pre-defined allocation. The 
event-based allocation is triggered by the sequencing 
algorithm (see Figure 2 and Figure 3) when critical 
points are reached. It checks for the least loaded 
machine and reallocates the remaining jobs of the 
family to this machine. The pre-defined allocation is 
performed each day to balance the production load of 
the next highest three priorities. All families except the 
one in production are deallocated. The allocation 
algorithm starts reallocating families to the least loaded 
machines during the next three simulated working days. 
It tends to balance the amount of must-be-produced jobs 

in the next three days according to their delivery date 
between the machines. The pre-defined allocation 
processes tries to avoid major setups by sustaining a 
balance of the must-be-produced jobs between the 
machines by avoiding critical points. Manipulating the 
allocation of families during the simulation better 
explores the solution space of the problem after 
significant changes in the production load. Producing 
from different families changes the form of the 
production load and therefore, finding an enhancement 
in the allocation is possible during the simulation 
despite a perfect initial allocation. 
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3.2. Simulated Annealing  
Simulated annealing (SA) was combined with a 
discrete-event simulation model to solve the allocation. 
For the sequencing, the algorithm shown in Figure 3 
was used again. Simulated annealing is derived from the 
concept of physical annealing of a solid substance. It 
was first introduced in the early eighties by Kirkpatrick 
et al. (1983) to solve combinatorial optimization 
problems. Annealing is the process of melting a solid 
substance and cooling it slowly down until the particles 
arrange themselves in the solid state (Aarts et al. 2005; 
Kirkpatrick et al. 1983; Mirsanei et al. 2011). When the 
temperature is high the particles are free to move 
randomly since they hold a high energy. In this state, 
the simulated annealing shows a very random behavior 
and is more likely to accept a worse solution than the 
current best solution (Mirsanei et al. 2011). When the 
cooling process starts, the solid state reduces the 
random behavior of the simulated annealing. The 
algorithm starts to search for a better solution in the 
same region of the solution space, rather than jumping 
from one region to another region. 
Simulated annealing is used to solve the allocation 
problem on the SMD placement machines. The 
approach starts with a feasible solution to the problem 
as depicted in Figure 4. Then, the neighborhood search 
of the simulated annealing tends to find randomly a 
better solution in the current region of the solution 
space. The neighborhood search is based on a random 
single point operator (Naderi et al. 2009), in which a 
random family is picked and reallocated randomly to a 
different SMD placement machine. The number of 
changes (number of reallocated families) was restricted 
to one to avoid the simulated annealing behaving like a 
random search. After all families being allocated, the 
sequencing algorithm starts to build the production 
schedule of each SMD placement machine. After that, 

the jobs are allocated to the AOI machines based on 
their expected finishing time on the SMD placement 
machines. The allocation to the AOI machines tries to 
achieve a balanced production load between the 
machines and tries to consider the priorities of the jobs 
(due dates). The generated schedule is evaluated by 
using the discrete-event simulation model. The 
production sequences on the AOI machines are 
determined with the help of the EDD rule during the 
simulation run.  
After passing the result of the simulation run back to the 
simulated annealing algorithm, three cases can be 
differentiated: 

1. The new schedule dominates the old one in 
both objective values. The solution is accepted 
and used as the next start solution. 

2. The old schedule dominates the new one. 
3. Neither the old schedule nor the new one 

dominates. 
For case two and case three, the Boltzmann distribution 
is used to decide whether to accept a new solution or 
not (Naderi et al. 2009). A weighted sum of the 
observed objective values was used since the 
Boltzmann distribution contains only one value. The 
probability of accepting a worse solution depends on 
the current temperature of the simulated annealing. The 
setup of the parameters of the simulated annealing 
strongly impacts its quality (Pirlot 1996). The 
parameters are initial temperature, the number of 
iterations before changing the temperature and the 
cooling rate. In this implementation, the simulated 
annealing starts with an initial temperature between 20 
and 30 degrees. Each temperature contains 10 to 20 
iterations. The implemented cooling schedule is linear 
and the cooling rate deviates between 0.1 and 0.25 
degrees. 

 

 
Figure 4: Metaheuristic simulation based optimization 

 
3.3. Tabu Search  
The Tabu Search (TS) algorithm was combined with the 
same discrete-event simulation model, which was used 

for the simulated annealing. For the sequencing, the 
algorithm shown in Figure 3 was used again. Tabu 
search is one of the oldest metaheuristic approaches, 
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which was introduced by Glover (1986) to solve 
combinatorial optimization problems. In contrast to 
simulated annealing, tabu search is based on a 
deterministic solution mechanism, in which the 
neighborhood of the initial solution is build based on a 
set of specific moves, which are conducted on the initial 
solution to obtain new solutions. The current 
neighborhood is then investigated to identify the best 
solution. The initial solution is replaced by the best 
solution found, before starting the next iteration. The 
move which led to the current solution is stored in the 
tabu list and cannot be used again in order to avoid 
cycling. The aspiration function of the tabu search is 
used independently to evaluate the quality of the 
generated solutions of the moves from the tabu list to 
decide they can be used again (Nowicki and Smutnicki 
1996). 
The implementation of the tabu search in this paper is 
based on a single point operator neighborhood search. A 
single move is committed by picking a family and 
reallocating it to another machine. Each family is 
associated with three moves that generate three different 
solutions in the neighborhood. The solutions represent 
the possible allocations of each family to all considered 
SMD placement machines. For each generated new 
allocation, the sequencing algorithm is used to build the 
new production schedule on each SMD placement 
machine. Then, the jobs are allocated to the AOI 
machines, based on their expected finishing times on 
the SMD placement machines. Finally, the quality of 
each production schedule is evaluated using simulation. 
The results of the simulation runs are stored to identify 
the best solution and add its SMD allocation to the tabu 
list. The length of the tabu list is limited either to 10 or 
15 solutions. Since two objective functions (makespan, 
tardiness) are considered, a weighted sum was used to 
identify the best solution before starting the next 
iteration. The forbidden schedules from the tabu list are 
evaluated using the aspiration function. If a dominant 
solution is found, it is used to start a new iteration. 
 
3.4. Genetic Algorithms 
The Genetic Algorithm (GA) was used to deal with the 
allocation problem. The sequencing part of the problem 
was solved also with the same algorithm shown in 
Figure 3. Genetic algorithms are guided random search 
techniques that are often used to solve scheduling 
problems (Andersson et al. 2008). They are categorized 

under evolutionary algorithms. The concept of genetic 
algorithm is based on mimicking the process of natural 
evolution (Ross 2005). Natural selection as well as 
genetic inheritance are fundamental element of a 
genetic algorithm. It maintains a population of 
candidate feasible solutions of the problem. A problem 
is first encoded in a genetic representation (Cheng et al. 
1996). Each candidate solution is represented by a 
genome. Then, it simulates an evolution process of the 
candidate set of solutions to choose the best set. After 
the evaluation process, the best solutions are selected to 
evolve a new generation (offspring) of candidate 
solutions. The evolution process is usually performed 
by crossing-over the genomes of parents and/or 
combining them (Mutation), to indicated the genomes 
of the children solutions (Zheng and Wang 2003). It 
keeps iteratively performing these steps until some 
stopping criterion is met. 
The genetic algorithm was implemented using 
ExtendSim 9. A discrete-event model was built and the 
optimizer of ExtendSim 9 was used. This optimizer is 
based on genetic algorithm. The allocation problem was 
encoded and passed to the optimizer as a genome. Then 
the optimizer starts generating candidate solution, 
which represents different allocation possibilities of 
families to the SMD placement machines. For each 
generated new allocation, the sequencing algorithm is 
used to build the new production schedule on each 
SMD placement machine. Then, the jobs are produced 
on AOI machines according to the priority of jobs using 
the EDD rule. By the end of a simulation run, the 
objective values are send back to the optimizer to 
continue the evolvement process of the next generation 
of solutions. The general functionality of genetic 
algorithm can be also derived from Figure 4. In this 
implementation, the population size of the candidate 
solutions is 50. 
 
4. COMPUTATIONAL RESULTS  
The experiments have been performed on four different 
datasets, which were provided by the company. The 
datasets are heterogeneous in terms of the considered 
number of families, number of jobs and their associated 
part types as shown in table 1. A large number of 
families and over 650 different product types have been 
taken into consideration in all datasets. The major setup 
time averages 65 minutes and the minor setup time 20 
minutes. 

 
Table 1: Input datasets 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 
Number of jobs 164  170 175 143 
Number of families  41 37 36 35 
SMD processing time interval (min) 4 - 3,142 2 - 3,736 4 - 3,293 4 - 3,209 
Accumulated SMD processing time (min) 54,685 62,345 61,274 56,250 
AOI processing time interval (min) 4 - 4,351 3 - 5,590 5 - 3,528 3 - 4,300 
Accumulated AOI processing time (min) 72,528 88,702 74,738 79,294 
Quantity of PCB (parts) 40 - 109,920 20 - 143,040 21 - 186,960 20 - 216,000 
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Table 2 shows the computational results of the 
approaches used to solve the HFS problem. The Family 
Production (FP) scenario is a batch production strategy, 
which has been so far adapted by the company to set 
scheduling policies for their production. In the FP, a 
machine, once started producing jobs from a family, is 
not allowed to be switched to another family until the 
family is fully produced. Consequently, this scenario 
point out the minimum number of inquired major setup 
times to produce all jobs of any data set presented. As it 
was expected, the reported results of the standard 

priority dispatching rules didn’t meet the required 
performance criteria. Although, the shortest production 
time rule is often used to minimize the makespan, the 
indicated sequence-dependent setup times radically 
impacted their results and reported inefficient results for 
both objective values. The earliest due date rule also 
didn’t meet the requirements of minimizing the total 
tardiness and reported, in addition to the high number of 
inquired setup times, a violation in the delivery dates of 
jobs in most of the datasets. 
 

 
Table 2: Computational results of the different solution approaches 

 
Makespan 
(minutes) 

Major-Setup 
(number) 

Penalty 
(number) 

AVG Tardiness  
(minutes) 

Dataset 1 
FP 23,513 37 39 5,097 
SPT 23,586 126 30 2,883 
EDD 21,154 104 0 0 
ISBO 19,354 43 1 148 
SA 21,930 45 0 0 
TS 19,669 45 0 0 
GA 17,786 43 0 0 
Dataset 2 
FP 25,447 33 52 5,225 
SPT 26,662 135 31 4,811 
EDD 26,226 136 9 537 
ISBO 21,819 53 0 0 
SA 23,108 55 0 0 
TS 25,142 55 0 0 
GA 22,458 53 0 0 
Dataset 3 
FP 23,626 32 62 5,060 
SPT 25,756 131 36 4,143 
EDD 22,603 139 8 750 
ISBO 19,979 56 2 268 
SA 23,059 59 0 0 
TS 22,507 60 0 0 
GA 22,671 53 1 28 
Dataset 4 
FP 23,539 31 48 5,362 
SPT 20,507 113 26 4,430 
EDD 21,145 113 2 482 
ISBO 18,806 42 3 213 
SA 20,562 58 0 0 
TS 21,610 57 0 0 
GA 22,569 45 0 0 

 

Proc. of the Int. Conference on Modeling and Applied Simulation 2016,  
978-88-97999-78-2; Bruzzone, De Felice, Frydman, Massei, Merkuryev and Solis Eds. 

101



The ISBO, the Simulated Annealing (SA), the Tabu 
Search (TS) and the Genetic Algorithm (GA) have 
reported significant improvements in terms of the 
makespan and the total tardiness in comparison to the 
currently conducted scheduling polices in the company. 
The ISBO delivers for all datasets an improved 
production schedules, which are more concentrated on 
the efficiency of the production system. The ISBO 
slightly outperformed TS, SA and GA in terms of the 
makespan. This is caused by the dynamic behavior of 
the allocation algorithm implemented in the ISBO, 
which tends to balance the critical jobs and their 
families instantly during the simulation. The behaviors 
of the TS and the SA are relatively identical towards the 
considered system. Both solutions strategies reported 
production schedules without recording any penalties 
and slightly outperformed the ISBO in terms of total 
tardiness. GA slightly outperformed both SA and TS in 
terms of the number of major setup times.  
The makespan optimization with sequence-dependent 
setup time requires reducing the inquired setup times as 
well as the achieving a balance in the production load 
between machines. Those two goals tend to be often 
conflicting goals in any system and optimizing one of 
them would lead to deteriorating the other (Wittrock 
1990). For this reason, the obtained results from the SA 
as well as from the TS optimized the total tardiness, 
whereby the makespan witnessed an increase in all 
datasets. However, minimizing the inquired number of 
major setup times in a dynamic system, where the 
production backlog is never empty, leads to minimizing 
the makespan.  
The reported results from the ISBO have been obtained 
from a single simulation run, which required 
approximately 1 minute computation time. The SA has 
been configured to run 1500 simulation runs and 
reported the results for the datasets after approximately 
3 hours computation time. The TS was configured to 
run between 20 to 30 TA iterations, which roughly 
correspond to 2100 and 3150 simulation runs 
respectively. The number of simulation runs in the TS 
depends on the number of the considered families in the 
dataset. The genetic algorithm is configured to run 6000 
to 8000 simulation runs. The experiments have been 
conducted on a computer with the following 
characteristics: CPU 4 x 2.6 GHz, RAM 8 GB and 
windows operating system. 
 
5. CONCLUSION 
The paper has shown that the four applied solution 
approaches integrated simulation-based optimization 
(ISBO), simulated annealing (SA), tabu search (TS) and 
genetic algorithm (GA) could solve the hybrid flow 
shop (HFS) scheduling problem better than the decision 
rules used very often in practice in the printed circuit 
board assembly. All approaches lead to an improvement 
in terms of minimizing the makespan and producing 
more jobs on time. The ISBO delivers results much 
faster than the three metaheuristics SA, TS and GA. The 

metaheuristics lead to slightly better results in terms of 
total tardiness. 
The dynamic allocation as applied in the suggested 
ISBO allows for a very deep investigation of the 
solution space during the simulation and thus achieves 
very good results in terms of minimizing the makespan 
compared to the metaheuristics SA, TS and GA. The 
experiments with four real data sets have revealed one 
major challenge of solving HFS scheduling problems: 
Big jobs can lead to difficulties in finding a good 
solution. 
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