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ABSTRACT
In this paper, a deterministic four stage hybrid-flow-
shop scheduling problem with sequence-dependent 
setup times of a printed circuit board assembly is 
discussed. Since the problem came from an industrial 
company, availability constraints have been taken into
consideration. There are many reasons which can cause 
an unavailability of machines. In this article stochastic 
breakdowns and preventive maintenance were 
considered. Furthermore, deterministic breakdowns will 
be investigated, in order to compare deterministic and 
stochastic breakdowns in terms of the robustness and 
the stability of the solution and the required 
computational effort. The objective of the problem is to 
minimize the makespan, the total tardiness and the total 
setup time of the first stage. To generate an optimized 
production schedule, the metaheuristics simulated 
annealing, tabu search and differential evolution as well 
as a sequencing algorithm were combined with a 
discrete event simulation model. This paper is a 
continuation and extension of our previous work 
(Aurich et al. 2016; Nahhas et al. 2016).

Keywords: metaheuristic, simulation-based 
optimization, hybrid flow shop, breakdown, 
maintenance

1. INTRODUCTION & LITERATURE REVIEW
The development of digitization over the last decades 
and their connection with technical systems leads to the 
possibility to record the process data of a production 
system at any moment. This makes it possible to react 
faster to unforeseen events. In contrast to this, in most 
of the publications which were discussed in the field of 
scheduling, availability constraints were not taken into 
consideration. But real production systems are always 
subject to interruptions. Based on the data, which now
can be detected, it is possible to define preventive 
maintenance times more precisely and notice 
breakdowns quickly. Therefore availability constraints 
should be taken into account.
Two types of processing cases are differed in the 
literature, when a machine becomes available again

after an interruption. The first type according to (Lee 
1996) is called resumable, in which the processing of a 
job can be continued without any loss in time. In 
opposite to that it is called non-resumable, if a restart of
the processing from the beginning is necessary, which 
propagate a loss of time. (Saidy et al. 2008) surveyed a 
wide range of typical scheduling problems with the 
addition of resumable and non-resumable availability 
constraints.
Considering stochastic breakdowns, makes it difficult to 
create a mathematical model, because of the structural 
and functional complexity. However, simulation 
techniques are often used as an alternative solution. In 
addition, using simulation techniques the modeler is 
capable of mimicking the exact behavior of a 
considered system. According to (März et al. 2011), 
four possibilities of combining simulation with
optimization techniques can be differentiated:
 Optimization is integrated into the simulation
 Simulation as evaluation function of optimization
 Simulation results as initial value of the 

optimization
 Optimization results for configuring the simulation

Since this article focusses on a hybrid flow shop (HFS)
scheduling problem the literature review is concentrated
on parallel machine (P), flow shop (F) and hybrid flow 
shop scheduling problems. A hybrid flow shop 
production environment consists of k stages in series. 
Each production stage comprises j parallel machines. 
Each job i should be processed in all stages and each 
job can be processed by any machine of a stage (Ruiz 
and Vázquez-Rodríguez 2010; Pinedo 2012). 
The problem F2|.|Cmax is the only flow shop problem 
which can be solved in polynomial time. (Johnson 
1954) developed the so called Johnson Rule to solve 
this problem. However, already the problem F3|.|Cmax is 
NP-hard in a strong sense (Garey and Johnson 1979).
Also the problem HFS2(P)|.|Cmax is NP-hard in a strong 
sense, even if there is only one machine in the first stage 
und two parallel machines on the second stage, i.e.
problem HFS2(1, P2)|.|Cmax studied by (Hoogeveen et 
al. 1996). Several other cases of the two stage HFS were 
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studied in the literature (Gupta 1988; Li 1997; Allaoui 
and Artiba 2006).
(Allaoui and Artiba 2004) considered different HFS 
with four stages, a maximum number of five machines 
at each stage and 50 jobs. Furthermore resumable and 
non-resumable availability constraints were taken into 
consideration. They investigated the impact of the initial 
schedule on simulated annealing with different 
objectives, such as minimization of the makespan, total 
completion time, mean flow time, mean waiting time, 
mean tardiness and maximum tardiness. To generate the 
initial solutions the SPT, LPT and EDD dispatching 
rules were used. (Gholami et al. 2009) developed a 
simulation-based optimization approach to solve several 
HFS problems with sequence-depend setup times and 
stochastic breakdowns. Resumable processing was 
considered. He adapted the random key genetic 
algorithm to build a schedule for the first production 
stage. To assign the jobs for the following stages the 
SPT cycling heuristic and a Johnson-Rule-based 
heuristic were implemented. The simulation is used as
an evaluation function of the optimization. (Gholami et 
al. 2009) noticed that the first available machine rule 
would not be efficient, if sequence-dependent setup 
times have to be considered at all stages. 

2. PROBLEM DESCRIPTION
The considered deterministic scheduling problem can be 
described as a four stage hybrid flow shop scheduling 
problem. In the classical hybrid flow shop all jobs have
to be processed on one machine at each stage. In 
contrast to this the considered HFS is as special form, 
where all jobs have to be processed on the first and 
second stage, but only specific jobs have to be 
processed on the third or fourth stage or on each of 
them.
The machine environment consists of four stages (see 
Figure 1). The first stage contains four identical parallel 
surface mount device placement machines (SMD). 
These are the critical resources in the considered 
production system. The second stage accommodates 
five identical parallel automated optical inspection
machines (AOI). The further stages contain only one 
machine each, a selective soldering machine (SS) in the 
third stage and a coating machine (CM) in the fourth 
stage. In the first and fourth stage jobs are scheduled 
with sequence-dependent major and minor setup times. 

(Tang 1990) and (Wittrock 1990) introduced the 
concept of major and minor setup times. They both 
investigated parallel machines scheduling problems, 
where several jobs could be grouped into different 
families depending on their part-types. In the first stage 
the setup time sf depends on family-type f of a job. The 
jobs are cluster into families based on their raw 
materials. In the fourth stage the setup time depends on 
the coating-type c of job. The company uses two 
different coating-types. In the second and third stage 
jobs are scheduled with sequence-independent setup 
times.
The job nature and the considered restrictions can be 
described with the following assumptions:
 The number of jobs in a certain scheduling period is 

fixed.
 The processing time pi,j,k of each job i on machine j

of stage k is known and fixed.
 The priority of a job represents it´s desired delivery 

date di.
 It is not allowed to process jobs from the same 

family-type on different machines of the first stage 
at the same time.

 The buffer size between two stages is unlimited.
 Preemption and splitting of jobs are not allowed.

Unlike most of the papers which deal with scheduling 
problems, this paper takes availability constraints into 
consideration. More specific preventive maintenance 
and stochastic breakdowns can affect a machine during 
or not during the processing of a job. When the machine 
becomes available after an interruption, the processing 
of a job continuous without any loss in time, 
consequently it is resumable rs.
The objective functions of the analyzed HFS are to 
minimize the makespan Cmax (1), to minimize the total 
tardiness T (2) and to minimize the total setup time of 
the first stage ∑sf.

niCC i ...,,1maxmax  (1)

)0,max(,
1
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n

i
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According to the classification of (Graham et al. 1979)
the problem can be described with:
HSF4 (IP4, IP5, 1, 1)|sf , sc , rs|Cmax , T, ∑sf.

Figure 1: Production System
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3. SOLUTION APPROACHES
Since the considered problem is NP-hard, it is not 
possible to develop a polynomial algorithm, which can 
provide an optimal solution in a reasonable time. In 
order to reduce the complexity of the problem the 
allocation and sequencing decisions of the first stage are 
separated from each other. On the following stages the 
jobs are assigned to the machines according to the first 
available machine (FAM) rule.
To solve the allocation problem of the first stage the 
metaheuristics simulated annealing, tabu search and 
differential evolution were implemented. To deal with
the four independent single machine problems with 
sequence-dependent setup times in the first stage a 
sequencing algorithm was developed. The job sequence 
for the stages two to four is generated based on the 
earliest due date rule. The implementation of all 
metaheuristics, dispatching rules and the sequencing 
algorithm is done inside the simulation model in order 
to avoid an increasing computational time because of 
the data exchange between optimization and simulation 
tool. The simulation model was implemented in 
ExtendSim 9.1. The discrete event simulation approach 
is adapted to build the simulation model, in which each 
job is aggregated into a single object The combination 
of optimization and simulation model cannot be 
classified based on the classification of (März et al. 
2011). This is because two methods of combination 
were used. On one side the optimization is integrated 
inside the simulation. On the other side the simulation is 
an evaluation function for the metaheuristics.

3.1. Initialization
Before the optimization takes place the user must insert 
a dataset into an excel document. Moreover, the user 
must decide which metaheuristic should be used and 
accordingly the control parameter must be setup. Then 
an initial allocation of families is executed in excel. 
This can be done randomly or with some easy sorting 

rules, for instance sorting the families based on the 
number of jobs with the same family-type or the total 
processing time of a family on the first stage. Hereafter 
all informations were send to the simulation model and 
a single simulation run is executed to measure the 
objective values of the initial allocation.

3.2. Functionality of the metaheuristics 
Depending on the control parameters of the used 
metaheuristic a multi run simulation is setup. The 
execution of the metaheuristic takes place at the end of 
each simulation run. Based on the decision strategy of 
the metaheuristic it is decide if the current solution is 
used for the next iteration.

3.2.1. Simulated Annealing
Simulated Annealing (SA) is a nature inspired 
optimization technique, mimicking a 
thermodynamically cooling process. It was first 
introduced by (Kirkpatrick et al. 1983) and (Černý 
1985) to solve the traveling salesman problem. The 
neighborhood search (NHS) of the adapted SA is a 
random single point operator NHS. This means that a 
randomly chosen family is randomly allocated to a new 
machine at the first stage. The decision strategy of the 
SA is divided into the following cases:
1. The new schedule dominates the old one in all

objective values. The new solution is accepted and 
used as the next start solution.

2. The old schedule dominates the new one.
3. Neither the old schedule nor the new one dominates 

the other.
For cases two and three, the Boltzmann distribution is 
used to decide whether to accept a new solution or not. 
A weighted sum of the observed objective values was 
used since the Boltzmann distribution contains only one 
value.

Figure 2: Metaheuristic Simulation-Based Optimization
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3.2.2. Tabu Search
Tabu Search (TS) is a deterministic local search 
technique guided by a fixed or adaptive memory 
structure. It was developed by (Glover 1977), in order 
to solve combinatorial optimization problems. As
decision strategy for the adapted TS the best neighbor 
strategy is used. The NHS is again a single point 
operator neighborhood search. This means that in each
iteration each family is once allocated to each machine 
on the first stage. When the neighborhood search is 
finished the neighbors are compared to each other in 
order to find the best neighbor. If no neighbor exists 
that dominates all other neighbors in all objective 
values, the weighted sum is used to identify the best 
solution.

3.2.3. Differential Evolution
Differential Evolution is a stochastic population based 
optimization technique, introduced by (Storn and Price 
1997). In contrast to other metaheuristics it is 
comparatively new. 
For the NHS the user can decide between DE/best/1 and 
DE/rand/1. DE/best/1 means that the new individual is 
generated based on the best individual from the last 
generation and two randomly chosen ones. DE/rand/1 
means that the individual is generated depending on 
three randomly chosen individuals from the previous 
generation. The selection strategy for the DE is a greedy 
selection between the current individual and its 
predecessor. If the current solution dominates the 
previous one or if the weighted sum outperforms the 
other, the new individual is chosen, else the predecessor 
is selected for the next generation.

Figure 3: Sequencing Algorithm
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3.3. Sequencing algorithm 
The sequencing algorithm was developed in order to 
minimize the objective functions and furthermore to 
improve the machine utilization of the first stage and 
was derived from the one formally presented in (Aurich 
et al. 2016; Nahhas et al. 2016). To meet these 
conditions all jobs of a family should be processed 
successively to avoid major setups. But a strict 
successive processing of jobs from the same family 
would lead to delivery time violations of many jobs 
from other families. The algorithm has been developed 
to resolve this tension.
The behavior of the sequencing algorithm can be 
divided in two logical levels; a family level and a job 
level (see Figure 3). When the sequencing algorithm is 
initiated, it first executes the family level. Here, the 
smallest family which contains at least one of the 
highest priority jobs is chosen. The smallest family is 
the one with the least total processing time of jobs. The 
reason to choose the smallest family is a chance to 
completely produce all jobs of it before reaching a 
critical point. A critical point is met, when it is no 
longer possible to produce a job from the same family 
without violating the delivery date of jobs from other 
families. When the family level of the sequencing 
algorithm has chosen a family the job level is executed. 
On the job level the algorithm chooses jobs from the 
same family according to their priority, using the EDD 
rule. The sequencing algorithm keeps operating in the 
job level until all jobs of the family are produced or a 
critical point is met.

3.4. Machine Blocking
The machine blocking is an extension of the 
methodologies which were discussed in sections before. 
The goal of this extension is to avoid a delay of jobs. It 
is implemented on the stages two, three and four. When 
a job leaves stage k, it is checked if a job is processed in 
stage k-1, which will be delayed, when it has to wait in 
stage k. If this case occurs the free machine of stage k is 
blocked for the job. The blocking only takes place when 
all machines of a stage are full except one machine and 
all jobs in the queue of stage k are not critical. Critical 
means that a job must be processed as fast as possible to 
meet its due date. More precisely the maximum 

blocking time is up to 120 minutes and the job a 
machine is blocked for, has to be critical. 

4. DESIGN OF EXPERIMENTS
The datasets which were used for the experiments are 
real records from the company’s production pool. Each 
dataset represents a production schedule of three weeks. 
The characteristics of those datasets are shown in Table 
1. In general the dataset contain a relatively large 
amount of jobs, with heterogeneous processing times. 
In order to compare the impact of the deterministic and
the stochastic breakdowns, several runs with all datasets 
and solution methodologies were executed. A 
deterministic breakdown happens at the end of a day for 
135 minutes. This represents a 45 minute breakdown in 
each of the three shifts of a day. The behavior of the 
stochastic breakdowns can be described with the time 
between failure (TBF) and time to repair (TTR) scheme. 
The TBF is based on a normal distribution with a mean 
of 480 minutes and a standard deviation of 120 minutes. 
For the TTR a mean of 45 minutes and a standard 
deviation of 15 minutes were used. That is about 135 
minutes per day, which is similar to the deterministic 
behavior. Thus, the two breakdown variants are 
approximately comparable. The use of the normal 
distribution follows from an analysis of the machine 
breakdowns. In the stochastic case the objectives of 
each schedule are the mean values of teen simulation-
runs. To check the quality of an optimized schedule,
200 stochastic simulation runs were executed.
For the SA the following ranges of control parameter 
values were used: temperature T ∈ {15,30}, linear 
cooling rate α ∈ {0.1} and step size n ∈ {10,25}. The 
low α and the relative high n lead to a slow cooling and 
thus prevent a large amount of entropy.
The control parameters of the TS were set with the 
following ranges: tabu list length TL ∈ {5,20} and
number of iterations i ∈ {30,75}.
The experiments with the DE were executed with the 
following ranges of parameter values: number of 
generations G ∈ {25,100}, population size NP ∈
{20,50}, crossover rate CR ∈ {0.05}, mutation factor F ∈ {0.3}.

Table 1: Input Datasets

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Number of jobs 181 179 194 170

Number of families 21 23 24 29

SMD: process time interval | mean 7 - 2912 | 306 6 - 1376 | 366 3 - 1151 | 228 3 - 1957 | 326

AOI: process time interval | mean 9 - 3747 | 381 8 - 1605 | 456 4 - 1495 | 286 4 - 2173 | 403

SS: process time interval | mean 50 - 3250 | 845 133 - 2808 | 1083 11 - 3641 | 648 79 - 2804 | 1133

SS: proportion of jobs 15% 11% 18% 12%

C: process time interval | mean 137 - 8973 | 1322 67 - 2870 | 1044 70 -2302 | 786 70 -2302 | 1076

C: proportion of jobs 9% 9% 13% 11%
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5. COMPUTATIONAL RESULTS
Table 1 and Figure 4 show the computational results of 
the applied approaches. One of the research questions
was, whether metaheuristics are able to optimize the job
allocation, while the sequencing is done by a special 
algorithm and which metaheuristic performs best.

Overall the computational results of the applied 
metaheuristics are very similar. The formulation of a 
statement, which metaheuristic outperforms another in 
terms of the objective functions, is very difficult for this 
scheduling problem and these datasets.

Table 2: Computational Results of the different solution approaches
Makespan
(minutes)

Total Tardiness
(minutes)

Penalties
(number)

Major-Setups
(number)

Computational Time
(hours)

Dataset 1

determ
inistic 

B
reakdow

ns

SA 29618 352 0,432 18,395 0,73

TS 29561 250 0,267 19,86 0,45

DE 29946 291 0,384 18 0,28

stochastic 
B

reakdow
ns

SA 29921 323 0,458 19,075 9,03

TS 29703 341 0,465 20 8,53

DE 29744 404 0,53 23,21 9,03

Dataset 2

determ
inistic 

B
reakdow

ns

SA 27851 0 0,005 24,635 0,54

TS 28174 2 0,05 22,56 0,65

DE 27894 68 0,63 24,475 0,73

stochastic 
B

reakdow
ns

SA 27913 3 0,025 24,015 5,42

TS 28235 0 0,005 22,94 9,75

DE 27949 1 0,01 24,1 9,03

Dataset 3

determ
inistic 

B
reakdow

ns

SA 27983 3 0,055 27,755 0,68

TS 28462 64 0,665 25 0,98

DE 27886 6 0,01 25 0,73

stochastic 
B

reakdow
ns

SA 28148 1 0,06 25,14 13,55

TS 27483 27 0,22 25,25 9,75

DE 28385 3 0,065 25 9,03

Dataset 4

determ
inistic 

B
reakdow

ns

SA 28543 10 0,325 31,93 0,73

TS 28464 4 0,135 32 1,18

DE 28952 7 0,255 30,285 0,68

stochastic 
B

reakdow
ns

SA 28775 1 0,045 31 6,78

TS 28821 2 0,08 31 11,78

DE 28534 1 0,085 34 7,22
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The TS slightly outperforms the other approaches in the 
deterministic case in terms of total tardiness and 
makespan. When stochastic breakdowns took place, no 
solution approach dominates over all datasets. In 
summary, all methods are suitable for solving the 
considered problem. But, for example, an increasing 
number families would raise the complexity of the 
problem, especially the computational time of the TS 
would increase rapidly, because of the neighborhood 
search structure, cf. (Nahhas et al. 2016). A short tabu 
list leads to better results for the TS, this also caused by 
the small number of families. Furthermore another 
strategy for the generation of the start population of the 
DE should be tested. The current random generation 
seems to be improvable. 
The results for the makespan are very similar over all 
approaches, regardless of whether deterministic or 
stochastic breakdowns are considered. The evaluation 
of the provided Gantt chart shows that third and fourth 
production stage are highly loaded. Therefore they must 
be regarded as a kind of bottleneck, consequently the 
stages three and four have a main impact on the 
makespan. The sooner a job first arrives at one of these 
stages, rather at stage four, the smaller is the makespan. 

The first and second stages are often in an idle state, 
while the last jobs are produced at stage three or stage 
four. For this reason the company should maybe rethink 
the selection of objective functions. For example the 
total completion time could be a good substitute. On the 
other hand is the considered environment a dynamic 
system and a period of three weeks will be optimized. 
Since an optimization run will take place at the end of 
each week, more jobs could be added, which doesn´t 
need to be processed on stage three or four. 
Another research questions was if it is necessary to 
consider stochastic breakdowns or whether 
deterministic breakdowns also lead to stable production 
schedules. The experiments of both procedures showed 
very similar results in terms of makespan. In regard to 
total tardiness and total major setup times it seems that 
the deterministic procedure tends to better results. The 
computational time increases tenfold at stochastic 
procedure. It could be shown that the considering of 
deterministic breakdowns led to stable results, while the 
computational effort rapidly decreases. This procedure
suits very well for the consideration of machine 
breakdowns.

Figure 4: Computational Results of the different solution approaches for the first dataset
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6. CONCLUSION
In this paper, a four stage hybrid flow shop scheduling 
problem was solved with a simulation-based 
optimization approach. Sequence-dependent setup 
times, stochastic and deterministic machine breakdowns 
and preemptive maintenance were considered. The 
allocation problem of the first production stage was 
optimized with the metaheuristics simulated annealing, 
tabu search and differential evolution. The sequencing 
algorithm proposed by (Nahhas et al. 2016) was 
implemented to solve the sequencing problem of the 
machines on the first stage. For the following stages the 
first available machine rule was used for the allocation 
and the earliest due date rule was applied for the 
sequencing. The results of several experiments showed, 
that a deterministic representation of breakdowns 
suffices to reach stable production schedules. 
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