
AN EXECUTION MODEL FOR EXCEPTION HANDLING IN A MULTI-AGENT SYSTEM

Zina Houhamdi(a), Belkacem Athamena(b)

(a) Software Engineering Department, Al Ain University of Science and Technology
Al Ain Campus, UAE

(b) Management and MIS Department, Al Ain University of Science and Technology
Al Ain Campus, UAE

(a)z_houhamdi@yahoo.fr
(b)athamena@gmail.com

ABSTRACT
Multi-Agent Systems (MASs) are required to exhibit
diverse quality attributes like robustness, flexibility, and
possibly the ability to accommodate to their agents and
context dynamics without external intervention.
Exception supervision contributes to the achievement of
these goals, and the agent society has proposed many
approaches and patterns to supply MASs with exception
handling skills. This paper is dedicated to studying this
specific subject, particularly in knowledge-based agents
systems. The research aim is bilateral: the first aim is to
understand the exception concept in MAS. Therefore,
we can determine the study objectives to discuss. The
second aim is to examine part of these objectives. The
suggested methods in this paper describe approaches
and outcomes which are estimated to support the agent
society and ultimately to support Software Engineering,
possibly included within an undergo evolution manner.
Previous investigations have concentrated primarily on
the systematic perspective of exception handling. Our
methods propose to introduce exception utilities in the
MAS context.

Keywords: multi-agent system, exception, exception
handling

1. INTRODUCTION
MASs consist of multiple autonomous entities called
agents, each having different information and/or
diverging interests. They are distributed, and complex
systems and the agent society try to achieve
collaboration and competition between agents to
perform their actions in an extremely easy and modular
manner. The agent technologies are very widely
applied, and we can find in the literature several
applications varying from software agents that support
people across the network to independent robots in
industry. Consequently, MASs are an optimistic
approach and technological advancement in artificial
intelligence and software engineering (Chopinaud et al.,
2006; Houhamdi, 2011).
Since MASs are considered principally as software, and
according to computer science history of the past fifty

years, the development of reliable systems needs
devoted effort, attempts and exercises. Reliability is a
system quality measuring system convenience to the
user, system accuracy to support the user requirements,
and system execution performance and efficiency.
Methods for fault detection were proposed and
implemented in conventional software engineering to
improve the reliability level of software. Contemporary
accomplishments assure some of the previously
mentioned characteristics in diverse circumstances of
non-open and uniform systems. MASs defy existing
implementations and focus on complicated applications
because they are requested by the users of the software
and the organization structure. MASs apply to systems
which are heterogeneous, interactive and composed of
independent agents.
Among methods to enhance the software reliability,
exception handling is reputable and well known as a
robust and simple technique (Castelfranchi, 2005;
Houhamdi and Athamena, 2011a, 2011b, 2012).
Exception handling was included in Programming
Languages (PL) since a long time ago to manage
unusual situations faced during the code running
adequately and methodically. On the other hand,
distributed systems have demonstrated that exception
handling techniques need particular expansions to apply
to these kinds of systems. Simultaneously,
achievements in software development have increased
the necessity for alternate methods also. MASs also
possess characteristics that require re-examining the
exception subject.
The purpose of this paper is to understand the concept
of exceptions in MASs and to suggest an appropriate
architecture for MASs which is open, heterogeneous
and features mainly autonomous agents. The agent
society has prompted many studies that demonstrated
the necessity to handle exceptions in MASs at the
system level. This handling includes management and
necessary techniques encompassing the management.
Solutions proposed up until now apply to a restricted set
of MASs only, where usually agents are non-
autonomous, and the methods at system level
necessitate a perfect collaboration between agents

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

81

during exception handling execution (Chopinaud et al.,
2006; Houhamdi and Athamena, 2011a). Agent
autonomy is an essential quality that must be
guaranteed when agents treat exceptions by themselves
in the first place; this is considered a requirement of any
proposed solution. In this case, exception handling then
depends on mechanisms at agent level to manage the
weakness of existing solutions and improve them. In an
exception situation, the decision is taken by the agent
itself to start treating the exception, trust in own
expertise or request help from the system level.
The model proposed in this paper guarantees the agents’
autonomy by ensuring that the agent maintains control
during its processing even when exceptions occur. This
approach allows the agent to make an individual
decision if a situation is an exception; hence the
autonomy is enforced. The approach is specified
formally, and its relative architecture is described.

2. BACKGROUND
The actual solutions for exception handling in MASs
give the illusion that agents can deal with a situation
which isn't Exceptions at Programming level (PE),
although they still require taking into account PE
situations like unforeseen or uncommon states (Issarny,
2001; Romanovsky, 2001). This illusion is conducive to
the notion of Agent Exception (AE) that is described in
this paper. To investigate and define an appropriate
signification of AE we use the primary definition of PE
as starting point. According to function oriented and
object oriented PLs, the word “exception” has obtained
a specific definition, firmly joined to programming
standards, exemplified by the Good enough definition
(Goodenough, 1975):
Of the conditions detected while attempting to perform
some operation, exception conditions are those brought
to the attention of the operation’s invoker. The invoker
is then permitted (or required) to respond to the
condition.
Whenever a program makes a procedure call during its
runtime, the procedure needs to evaluate conditions that
must be valid before execution. If one condition in the
minimum is not approved, the procedure sends a note to
the caller declaring that it cannot be performed because
of the condition infraction.
Since the MAS constituents (agents, resources, and
context) are all programs, we can apply this definition.
Nevertheless, the MAS properties and past studies
prove that this definition is inappropriate to deal with
AEs, due to the autonomy, heterogeneity and openness
features. The previous definition of exception constrains
the called procedure to assert definitively that a
circumstance is unusual. This approach is inadequate to
MASs, where ambiguous understanding is likely to
arise. An agent is assumed to be autonomous when it
can make a decision alone. The interpretation of PE
doesn’t grant this decision, as represented in Figure 1.
If the method decides that there is an exception, the
caller doesn’t have an alternative choice to execute. For
instance, the method response is an exception object in

several object-oriented PLs. However, this solution
does not outline the purpose for AEs, as illustrated
below in Figure 2.

Figure 1: Programming Exceptions

Figure 2: Agent Exceptions

Independent agents must be qualified to determine if a
received message from other agents (initially or
following a demand) is usual, unusual, or, for example,
to be disregarded. Therefore, this declaration is
extended to every received message by an agent from
agents, the context, or the external environment
components.

 Agent Exception: By MAS traits, the AE model
described in this paper is presented and
understood at the agents’ level. In other words,
the basic element in the exception handling is a
whole agent unit, not just the instructions set in
its program.

 Definition: An AE is the agent’s understanding
of an observed situation as unusual or not
expected.

The previous definition describes the agent’s influence
in the exceptions situation and, more precisely, during
the decision step directly related to the events observed
by the agent (Figure 2). During the reception of an
event, the agent can determine how to arrange this
event. This belief is the main criterion for exception
decisions. The agent is a knowledge based entity that
performs a protocol. The agent goals and tasks permit
the expression of expectations for context modification
in the future: agents communicate by sending messages
for the purpose of obtaining special outputs that are
considered as expectations. Accordingly, the agent is
qualified to classify a received message as unexpected if
the message does not agree with its expectations.
The PEs are different from AEs. The former concerns
the event and the later concerns the event
understanding. Agents, which are autonomous, can

Object Method
Interrupt: “error

message”

Call

Exception

Caller
Agent

Called
Agent

2: Answer A

1: Request R

or

A?

or
 Ignore

Exception
Expected

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

82

control themselves and determine how to deal with
events; this is the principle of AE.
Someone can be in dispute with this definition and
argue: independent agents are usually assumed to
operate in a society setting. A society establishes strong
relations. These relations assume that, even with
independency, agents act based on received demands.
Such context is relevant in a closed systems
environment in which a human user supervises all
system components. The illustrative supervisor-worker
pattern assumes that workers comply with the
supervisor. However, in an open-system, the designer of
particular agents desires to preserve total control of its
agents and wants to decide on how to reply to requests
from other, possibly anonymous, agents.
Notwithstanding strong relations among two agents,
independency is conducive to the previous definition. It
is the responsibility of the agent alone to determine how
to deal with an event.
This definition does not go against the strong relations
decided by societies. Coordination ability is merely
considered as an extension of agents’ autonomy. When
an agent has concluded that the event is unusual to its
understanding, the agent can improve its conclusion
based on strong relations. For instance, an ‘operator
agent’ can decline to abort when the mandate is from a
‘supervisor agent,’ for example, if the two agents work
in separate organizations but share a virtual space for
cooperation.
In MASs, AEs are associated with agent tasks, and they
influence the agent level. PEs are related to situations.
They influence the agent at the code level. This
description is illustrated in Figure 3.

Figure 3: Exception Levels in MAS

The following section’s purpose is to determine the
exception area of agents and to describe the
relationships between the PE and AE.
Note that the PEs can cause AEs. By way of illustration,
an unforeseen agent ending as result of a PE, such as a
null pointer, impacts the system organization directly.
This PE will then cause an AE, ‘agent death’
(Houhamdi and Athamena, 2011a; Klein et al., 2003).
In this situation, the remaining agents require
rearranging their tasks to compensate for the agent

death. In this manner, the rearrangement is an exception
that happens at the agent level.
However, some PEs, occurring in an agent, will not
generate an AE. As case in point, network exceptions,
where a handler retries the network connection to
approach this issue, are commonly controlled at the
code level. Accordingly, the agent pursues performing
its task.
Nevertheless, AEs do not generate PEs. Particularly,
agents are not aborted by the AE’s occurrence. That is
to say, AEs do not provoke the agent code to contend
with a malfunction. AEs do not cause PEs because AEs
are discovered in input messages using a particular
estimation method. The message is treated as an AE,
while the program is correctly performed and no PE is
revealed. The agent proceeds its activity by managing
the anomaly or disregarding the message and continuing
the following iteration. During this method, the agent
status and its code are consistent with the typical
progression without producing any PE.
The previous characteristics single out one-sided
relations among the two exceptions kinds, which are
illustrated in Figure 4. It shows the relations between
the exception areas that are conceived for a MAS. The
PEs can, in some situations, generate an AE, although
the opposite is impossible.

Figure 4: Exception Area Mapping

MAS Exception: The relation between PEs and AEs
allows classifying the uncommon circumstances that
confront an agent. This section purpose is to identify
exception classes to make their investigation easier and
also to organize the handlers’ classes that will be
produced.

 The Identification Axis: Mainly, there are two
classes of exceptions depending on if the
exception is identified or unidentified. If there
is a handler to manage the exception then it is
classified as identified; otherwise, the
exception is unidentified. In PE, unidentified
exceptions provoke an early program ending,
because it cannot manage the event and
possibly risks damage to the physical devices
or operating system. However, in AEs,
unidentified exceptions signify that the agent
lacks the necessary knowledge to manage the
event in the present situation. Nevertheless, the
agent state is still reliable and can make a
decision by its qualifications. The simplest
solution is to not pay attention to the event
(like Does-Not-Understand in Smalltalk), but
the complex solution is to exploit the
circumstance, like KGP agent (Antonis et al.,
2004).

Agent 2

Agent 1

Agent 3

Code Level

Agent Level

P
ro

gr
am

m
in

g
E

xc
ep

ti
on

A

ge
nt

 E
xc

ep
ti

on

Code 3 Code 2

Code 1

Agent Exception Area
Programming

Language Area

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

83

 The Coverage Axis: According to coverage of
the agent exception, we define two types:
Alone and Team. If the agent can manage the
exception without the assistance of other
agents, the level is labeled as Alone. If the
agent needs to interact with other agents to
manage the exception, the level is thus
assumed as Team. In an agreement contract, if
a customer gets a remarkable bid, for example,
inferior 15% of the estimated cost proposed by
the customer, in this case, the exception level
is Alone and can be managed quickly. The
customer updates its status so that this bid will
gain the call for proposal. At this point, the
customer continues the procedure execution to
agree on the bid officially and reject the
remainders without additional cooperation
needed to manage this special circumstance, so
this exception is an example of the Alone type.
On the other hand, an exception such as
declaration postponement is an example of a
Team exception. A supplier declares a
deferment to the customer, who replies by
allowing a deadline prolongation to every
supplier.

 Handler Description: In this section, we define
the exception classes, and then we categorize
the applicable handlers. By default, the death
of an agent is presumed as a common situation
that is classified as an identified AE (Klein et
al., 2003; Miller and Tripathi, 2004). Still, this
AE can be dealt with in either an alone or team
manner, according to the handler type used by
the agent to control the situation.

There are two objectives behind exception organization.
The first one is to guide developers to design handlers
or methods to elaborate during execution. Based on the
MAS application, certain handlers’ types are essential
and others are unessential. Handlers for the identified
exception need particular methods to seek or create
them; this is very expensive for some systems. The
other objective is to help agents in the decision process.
Based on the exception, the agent examines a special
handler.
Handlers’ classes are described by the abbreviation in
Table 1. For example, IAA refers to handlers for
identified exceptions at Agent Alone level, while UC
represents handlers for an unidentified exception at
Code level.

Table 1: Exception Classes

 Agent level
Code level

Alone Team
Identified IAA IAT IC

Unidentified UAA UAT UC

 Handlers Classification: Since there are two
manners to manage exceptions (Alone or
Team), agents will confront a difficulty in

deciding the availability of the handler of
every category. Team handlers are a costly
process, particularly in distributed systems,
and they overcome the distribution advantages
because they extend the computation cost with
interaction expenses. Therefore, the agent
prefers handlers that handle exceptions in an
Alone style. Further, the interaction
complexity in MASs accentuates this choice.

The exception handling method emphasizes
representing exceptions on the communication protocol
because “MAS” principally refers to cooperative agents
that perform as reported by the communication
protocol. In this paper, we use the word “exception” to
denote AE if there is no confusion with PE.

3. AGENT EXECUTION MODEL
The AE definitions have impacted the agents’ execution
model and framework. The best agent frameworks use
the Belief-Desire-Intention model, including the Jason
and Jadex architectures or the KGP architecture.
However, these models suffer from two weaknesses
regarding AEs. Exception handling is not processed
explicitly in the agent execution model and no
distinction is made between exceptions. The exception
is treated as PE and depends upon the languages
services. The AE’s handling, on the other hand, needs to
consider the MAS properties, and the best practices
propose to distinguish clearly between the application
logic and the exception handling. This work proposes
an agent execution model which includes exception
handling so that the previous distinction is achieved.
In general, the execution model for MAS is iterative,
traditionally a cycle of perception, reasoning, and
action. Our model uses the same iteration but extends
the perception and action activities to relevantly arrange
the reasoning activity in exception situations,
considering the agent independency property.
The remaining of this paper defines the proposed
agent’s framework mainly by describing its protocols,
handlers, and knowledge, and after that the execution
model.
Protocol and Handler Structure: AUML and allied
studies have modeled handlers and protocols using
sequence diagrams or graphs. We decided to describe
handlers and protocols as diagrams (more specifically
directed trees) to set up the description formally. The
root represents the initially transmitted message. The
tree is organized by using the relation R, defined as
follows: If T is a directed tree; L represents the leaves
kit)(TL and M the edges kit. The edges represent
operations such as sending a message in handlers and
protocols.
R is a non-symmetric, non-reflexive and transitive
binary relationship. T verifies the following structural
properties:

1) m R m Mm LMm ,,\
2) }\{)(,\(m R mmmsuc LMm T

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

84

3) m R m Mm rootMm ,},{\

The first definition declares that all sent messages have
a successor except leaves.)(msucT represents the
successors set for a given edge of T in definition two.
Definition three states that all sent messages have a
predecessor, except the root.
In the case where protocol comprehends a loop in its
description, the tree specification utilizes the cycles
unrolling over the tree branches. Such unrolling action
is usual, e.g. Petri nets.
We describe two sets: the M messages Set, the H
histories Set, and H (Empty execution). The
execution continues based on the acquired message kind
and the handler (h) and protocol (p) state which the
agent executes. “Perform” defines the progress of the
agent running the protocol and the handler.

Perform: HHHHM

endm if ,

endm if ,mH
Hm

p
p),(

)},{(
),,(

ph

hp

hphp

hp

endm if ,mH

endm if H

endendm if ,mHH

HHm

}){,(

),,(

},{}){,(

),,(

),,(pHm describes the protocol p’s execution. The

execution history evolves during message processing
(sent and received), and the processing terminates when
the end is obtained; in this case, the protocol history is
cleaned out but),,(hp HHm represents a handler
execution. Consequently, the handler treatment follows
the protocol execution. When m is pend , the handler
starts after the protocol interruption. Finally, when m is

hend , the handler processing is completed with success,
and the protocol execution is restarted.
Figure 5 represents a general execution model of agents
which contains three layers. We explain them
consecutively in the following paragraphs. The
description depends on algorithms which are
independent of the application domain.
First Layer: This layer contains message reception,
pertinence checking and belief comparison, which are
the basic phases in the agent processing model. The
agent collects the messages from its inbox. They are
sent to pertinence checking to discard messages that are
not important for the agent, as reported by the relevance
table. Pertinent messages are matched to the agent
beliefs in the Beliefs Table. If an equal entry is located,
then the output is an expected message, otherwise
Taking Decision is started when the message is
unexpected, and the Handler Selection is activated.
In the Decision Process, which is the agent's brain, the
message is treated to define the agent action, if any, and

update the agent knowledge. Besides this task, the
Decision Process performs continually and does not
need an input to generate an output. This function is not
illustrated in Figure 5 because it is not related to
exception management. Nevertheless, it is essential
because it is the ‘dynamic’ part, indispensable for the
agent to induce actions.

Figure 5: Agent Execution Model

Second Layer: The agent finds an unusual situation
when a match is not found in belief matching phase:

 Handler Selection: concerns Identified
Exceptions, i.e. the agent possesses a handler
to manage the found exception. Unforeseen
messages are forwarded to the Handler
Selection; this later explores the handler table
for a relevant handler. If a table entry has a
requirement that meets the message, a handler
is located. If diverse handlers are located, the
Favorite method determines which handler is
better for the agent, according to its
environment and state. The Favorite method is
thus domain dependent. Favorite methods use
metrics to appraise handlers (e.g., the handler
complexity).

 Handling Preparation: when a handler is
located, it is sent to the Handling Preparation
phase which interrupts the protocol affected by
the unexpected message, starts the execution of

m = Message

Start

Match?

No

True

False

Filter out Message

Rm = Relevant
Message

End Inbox

Relevance
Table

Agent Beliefs
Table

Table Decision

Send Message

Receive Message

m’

Select Handler

H

Prepare Handler

Rm

Search Handler

H

(Rm, H)

True Evaluate Handler
(Rm, H)

False

Generate Handler

(Rm, H)

(Rm, H)Rm

L
ay

er
 1

:
E

xe
cu

ti
on

 M
od

el

L
ay

er
 2

:
Id

en
ti

fi
ed

E

xc
ep

ti
on

L

ay
er

 3
:

U
n

id
en

ti
fi

ed

E
xc

ep
ti

on

H

H

Yes

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

85

the handler and specifies that the interrupted
protocol needs to be appraised at the
termination of the handler by producing a
protocol dominion for the handler. Thus, the
agent decides whether to continue the
interrupted protocol or to abort it. The output
of this phase is a message which is sent to the
Decision process, apt to treat the exception.

Third Layer: If the selection phase does not find a
handler, the agent faces an Unidentified Exception; in
other words, the agent does not possess a handler:

 Handler Search & Evaluation: The agent
attempts to find a Handler by communicating
with other agents or with a handler depository.
A successful search provides a handler. The
Handler Evaluation process analyses the
handler fitness, keeps the agent autonomy
concerning this foreign handler, and saves the
exception class and its handler in the handler
table for future use. Usually, the evaluation
process is complex but we use a simple method
by assuming that a handler is considered
adequate if it reaches a situation allowing the
suspended protocol to continue its processing.

Formally, the handler adequacy, H, is adequate if and
only if itn PH ,
where H is a Handler: ni HH i),(
and P is a Protocol: ni PP i),(interrupted at the

statement itP
and endend p
More precisely, the agent accepts the handler if it
directs the processing to the desired situation before the
exception occurrence. However, this basic verification
does not certify that each statement in the handler is
adequate for the agent. This generic approach is domain
dependent.

 Handler Generation: In case the handler search
fails to find a handler (or the found handler is
unacceptable), the agent tries to generate a
Handler. In the proposed approach, this phase
unavoidably engenders a default handler dH
if no acceptable one is found; this dH is
important since it ensures the execution
progression. The dH will disregard messages
during a period before declaring the failure of
the protocol. For example, the handler gH

produced to expect the message m during two
times related to the protocol P is described as:

 hp

h

hg

endendpupdatemm

ignoremendm

ignoremendmH

,,))((,((

,)(,),(

,)(,),(

The agent assumes it will get m two times, and then
sends hend to the protocol. Each time, the message is
ignored by the agent if it does not match its beliefs.
After three non-matching messages, the protocol state is
updated and a message hend indicating the protocol
annulment is forwarded to all the agents.
Table 2 presents the model complexity in all cases, with
the following legend: pd (decision process), sh (handler
selection), eval (handler evaluation) and p (protocol).

Table 2: Model Complexity Table
Case Complexity

No Exception Handling dpn

With Exception Handling))(,max(pdpdp nOnn

Identified Exception)(),(max dhs nOnO

Unidentified Exception)(),(,max dhseval nOnOn
Unidentified Exception
Default Handler

)(),(,,max dhsdheval nOnOnn

Since agents execute a few protocols concurrently, the
cost is reasonable in comparison with MASs without
exception handling. However, in the case of heavy
agents, we should consider other approaches for fault
tolerance.

4. AGENT ARCHITECTURE
Figure 6 represents the agent framework. It is
comparable to existing agent architectures and it
integrates special components for exception handling.
In particular, these components can be taken out from
the architecture if the agent does not need this feature or
as a result of design choices.

Figure 6: Agent Architecture

Application Context

Sensors

Pertinence Filter

Belief Filter

Agent Knowledge

Agent Mechanisms

Identified Exceptions

Unidentified Exceptions

A
na

ly
si

s

Actuator

Pertinence

Beliefs P
ro

ce
ss

in
g

In
ne

r
St

ru
ct

ur
e

A
ge

nt

Tr

an
si

tio
n

 W

rit
e

 R

ea
d

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

86

The agent framework includes four principal
components to be harmonious with the execution
model: the internal description, internal processes,
perception, and operations.
The correspondence between the execution model and
the framework is illustrated in Table 3. The left column
names the execution model components defined in the
third section. The middle column lists the framework
components described in the fourth section. Parts of
these components are common architecture components
and the others are arranged in different framework
components in the right column.
Table 3 shows that the proposed agent architecture
includes the required features to implement the whole
execution model. The constituents of the architecture
support two characteristics of agent models with
exception handling abilities:

 The Architecture Components supply the
developer with an advanced and general
architecture prototype (Athamena and
Houhamdi, 2017). The column guides
architecture refinement.

 The Architecture Constituents separate the
application concerns from the exception
concerns.

Table 3: Correspondence between Agent Architecture
and Agent Execution Model

Execution Model
Constituents

Architecture
Constituents

Architecture
Components

Receive Message
Filter out Message
Compare with beliefs

Sensor
Relevance Filter
Expectation Filter

Perception
Perception
Perception

Take Decision
Select Handler
Prepare Handler

Base Mechanism
Identified Exception
Identified Exception

Internal Processes
Internal Processes
Internal Processes

Search Handler
Evaluate Handler
Generate Handler

Unidentified Exception
Unidentified Exception
Unidentified Exception

Internal Processes
Internal Processes
Internal Processes

Update State
Send Message

Generation
Operator

Operations
Operations

Tabular Knowledge Internal Description Internal Description

These two characteristics are essential for the developer
since the refinement and separation of concerns are
well-known as good practices in Software Engineering.

5. SIMILAR WORKS
Exception handling research covers investigations in
artificial intelligence and software engineering. As
MASs are also related to these areas, several tangible
implementations are noticed in the MAS theory or their
building practices. Nevertheless, these achievements do
not satisfy the essential qualifications to approach MAS
exceptions. PEs have established theories, but they are
not applicable to MASs adequately because of MAS
features such as heterogeneity, openness, and
autonomy. These approaches can deal with the openness
and heterogeneity issues; however, they cannot manage
the autonomy characteristic. One remarkable effect is
that there is no attempt to provide a precise description
of the exception notion in a MAS, particularly in the
agent society. Several illustrations are clarified in depth,

e.g. agent death, but the exception notion remains
implicit. The most notable works that approach
exception handling in MASs are:

 The Sentinel Architecture: sentinels are agents
inserted in a MAS software to supply the
application with a fault tolerance capability
level (Athamena and Houhamdi, 2017; Hägg,
1997). The Sentinel supports the agents in their
communication. Sentinels are specially
designed for fault detection and recovery. The
detection of an exception during agents’
communication activates the sentinels which
try to resume a reliable situation. The problem
is that the sentinel violates the agent paradigm
assumptions (encapsulation is not respected
and, consequently, neither is agent autonomy).

 Sentinel-Like Agents: extends the sentinel
model with a reliability database (Klein et al.,
2003) where the failed agents are stored. The
database leads sentinels in recovery functions
to reduce the needed time to recover. The
Sentinels operate similarly to the Hagg initial
model without inspecting agent interiors, as to
enhance the agents’ autonomy. However, this
system suffers from two weaknesses: the agent
autonomy is violated (as Sentinels can change
agent message), and the exception handling
system is fragile in the case where sentinels
cannot perform their activities when executing
a handler.

 Commitment Protocols: consider exception
management in the business milieu (Mallya
and Singh, 2005). This model uses
commitment protocols to describe the agents’
communication in an open system. This
approach preserves the agents’ autonomy.
However, it is principally abstract, and it
requires validation in real world applications.

SaGE in the Mad-Kit Platform: SaGE is a framework
which adds to the Java exception management system
services to manage problems related to autonomous
agents in the Mad-Kit (Souchon et al., 2004). In Mad-
Kit, an agent possesses roles and provides services to
other agents. Exceptions can happen at the role, service
and agent level.
SaGE follows the agent exception description, but does
not ascend to the heterogeneous system level because it
uses just benevolent agents. However, SaGE contributes
notably to agent-oriented engineering by including
exception handling, to wit the exception expansion
according to the particular organization model and the
cooperative exceptions.
Our approach endows an individual agent with relevant
potentialities concerning exception situations and
conforming to agent characteristics. Existing systems
satisfy part of the agent features, but our model
approaches the autonomy issue appropriately. The
principal model advantage compared to other systems is

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

87

its robustness and reduction of the developer job; in this
manner, the developer will be able to focus on more
important processing matters.

6. CONCLUSION
MASs should have many features such as robustness,
flexibility and automatic adaptation to the agents’
dynamics and context. Exception handling is one of the
techniques that contribute to the achievement of these
features, and the agent society has proposed diverse
approaches to supply MASs with exception handling
facilities.
Agent exceptions need certain special approaches to
assist developers in writing pertinent handling
programs. Our model improves the agent framework’s
ability to analyze the messages and identify the
unforeseen ones during collaboration protocol. The
presented approach is integrated into the agent
framework to allow the developer to concentrate on
writing suitable handlers’ programs. The model uses
these handlers to manage exceptions whenever needed.
The framework supplies agents with the model, thus
they treat exceptions autonomously.
The proposed approach discusses exception handling at
the agent level, which treats agent level and system
level exceptions in a decentralized manner (complex
and inefficient), however strong and adaptable if the
MAS faces exceptions. The agent level hides the
problems related to the system robustness because
agents are autonomous and the MASs are open and
heterogeneous, and the system level improves the
system performance.
Finally, a future improvement of the proposed approach
is an extra investigation into the handler generation
methodologies in different circumstances to make the
agents more autonomous when encountering diverse,
unusual events. Further, an interesting domain is the
agent evaluation of management approaches proposed
by the collaborative agents in the MAS.

REFERENCES
Antonis, C., Paolo, M., Fariba, S., Kostas, S., &

Francesca, T. (2004). The KGP model of agency.
In the 16th European Conference on Artificial
Intelligence (pp. 28–32). IOS Press.

Athamena, B., & Houhamdi, Z. (2017). An Exception
Management Model in Multi-Agents Systems.
Journal of Computer Science, 13(5), 140–152.

Castelfranchi, C. (2005). Mind as an Anticipatory
Device: For a Theory of Expectations. In
International Symposium on Brain, Vision, and
Artificial Intelligence (pp. 258–276). Springer
Berlin Heidelberg.

Chopinaud, C., El Fallah-Seghrouchni, A., & Taillibert,
P. (2006). Prevention of harmful behaviors within
cognitive and autonomous agents. Frontiers in
Artificial Intelligence and Applications, 141, 205–
209.

Goodenough, J. B. (1975). Exception handling design
issues. ACM SIGPLAN Notices, 10(7), 41.

Hägg, S. (1997). A sentinel approach to fault handling
in multi-agent systems. In Australian Workshop
on Distributed Artificial Intelligence (pp. 181–
195). Cairns, Australia: Springer Berlin
Heidelberg.

Houhamdi, Z. (2011). Multi-Agent System Testing: A
Survey. International Journal of Advanced
Computer Science and Applications, 2(6), 135–
141.

Houhamdi, Z., & Athamena, B. (2011a). Structured
Integration Test Suite Generation Process for
Multi-Agent System. Journal of Computer
Science, 7(5), 690–697.

Houhamdi, Z., & Athamena, B. (2011b). Structured
System Test Suite Generation Process for Multi-
Agent System. International Journal on Computer
Science and Engineering, 3(4), 1681–1688.

Houhamdi, Z., & Athamena, B. (2012). Monitoring and
Diagnosis of Multi-Agent Plan : Centralized
Approach. European Journal of Scientific
Research, 87(4), 541–551.

Issarny, V. (2001). Concurrent Exception Handling. In
Advances in Exception Handling Techniques (Vol.
2022, pp. 111–127).

Klein, M., Rodriguez-Aguilar, J. A., & Dellarocas, C.
(2003). Using Domain-Independent Exception
Handling Services to Enable Robust Open Multi-
Agent Systems: The Case of Agent Death.
Autonomous Agents and Multi-Agent Systems,
7(1/2), 179–189.

Mallya, A. U., & Singh, M. P. (2005). Modeling
exceptions via commitment protocols. In
Proceedings of the fourth international joint
conference on Autonomous agents and multiagent
systems - AAMAS ’05 (p. 122). New York, New
York, USA: ACM Press.

Miller, R., & Tripathi, A. (2004). The guardian model
and primitives for exception handling in
distributed systems. IEEE Transactions on
Software Engineering, 30(12), 1008–1022.

Romanovsky, A. (2001). Exception handling in
component-based system development. In 25th
Annual International Computer Software and
Applications Conference. COMPSAC 2001 (pp.
580–586).

Souchon, F. F., Dony, C., Urtado, C., & Vauttier, S.
(2004). Improving Exception Handling in Multi-
agent Systems. In Lecture Notes in Computer
Science (pp. 167–188). Springer Berlin
Heidelberg.

AUTHORS BIOGRAPHY
Zina Houhamdi is an Associate Professor at the
Department of Software Engineering, Al Ain University
of Science and Technology, UAE. Her research work
has been published in several academic journals and has
been presented to scientific conferences. Her research
areas of interest are data quality, agent-oriented
software engineering, software testing, goal-oriented

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

88

methodology, software modelling and analysis, Petri
nets, and formal methods.
Belkacem Athamena is an Associate Professor at the
Department of Management and MIS, Al Ain
University of Science and Technology, UAE. His
research focuses on information system, data quality,
data integration, software testing, software modelling
and analysis, Petri nets, and formal methods. He has
published in various recognized international journals
and conference proceedings.

Proceedings of the Int. Conference on Modeling and Applied Simulation 2017,
ISBN 978-88-97999-91-1; Bruzzone, De Felice, Frydman, Longo, Massei and Solis Eds.

89

