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ABSTRACT 

A key feature in the management of wind energy 
systems with storage is the probabilistic wind speed 
forecast. In this paper we consider a mathematical 
model to determine the operative management of a wind 
energy system with storage. The model includes all the 
important elements of the energy system. Decisions take 
into account data concerning to the structure of selling 
prices and penalties as well as updated probabilistic 
wind speed forecast. The main focus of this work is to 
study the influence of the probabilistic wind forecast 
accuracy in the operative management of a wind energy 
system with storage. A simulation based optimization 
methodology is proposed to conduct the computational 
study. 
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1. INTRODUCTION 
Renewable energy provides valuable benefits for the 
environment, health and economy (produces little or no 
CO2 emissions, stabilizes energy prices, provides an 
inexhaustible energy supply, etc.). Nevertheless 
common problems to all renewable sources of energy 
are high variability in its availability; uncertainty in its 
forecast and then difficulty in matching production and 
demand. As a consequence in geographic areas with 
high wind energy penetration energy plants based on 
fossil fuels are necessary to support the network (in 
cases of low wind energy production), which increase 
the cost of the energy. In periods of high wind energy 
production the wind-driven generators could be 
disconnected because the network could not absorb all 
the electricity. 

The storage of energy would allow solving most of 
the problems posed by the wind energy generation. It 
makes possible the management of the generated energy 
leading to better selling prices in the electricity market. 
Furthermore, the stored energy increases the reliability 
of the renewal energy system since it enables to correct 
forecasting errors by matching the output energy to the 
forecasted production. Lastly, it increases the wind 
energy penetration index: energy can be stored in 
periods with higher production than requirements, and 
then released in low production periods.  

Different energy storage systems are nowadays 
available: lead-acid and sodium-sulfur batteries, 
compressed air energy storage, pumped hydro, 
electrolysis combined with fuel cells, and others, with 
different properties related with response time, storage 
efficiency and costs. Comprehensive technical reviews 
on energy storage systems can be found in (Ibrahima et 
al, 2008; Beaudin et al, 2010; Hedegaard and Meibom, 
2012).  In this work we consider hydrogen (H2) as the 
energy storage system, although the analysis carried out 
in this paper could be easily adapted to other storage 
systems. The hybrid wind-hydrogen energy system 
comprises electricity-generating wind turbines, 
electrolysers and hydrogen compressors to convert 
electricity into hydrogen (the conversion process), an 
H2-tank with finite hydrogen storage capacity and 
various energy-conversion technologies for the process 
of turning hydrogen into electricity (the recovery 
process). 

Energy prices follow similar rules to the stock 
market. They vary with demand, and fluctuate 
throughout a given day while also showing variations 
for the same time across different days. Furthermore, 
prices depend on whether (or not) the amount to be sold 
has been pre-committed (the day before). In the case of 
a pre-commitment, the price is higher, but if the agreed 
amount is ultimately not supplied, then a penalty has to 
be paid. When more than the agreed amount is supplied 
then the surplus has a lower price. Thus, to obtain full 
benefit from the participation in the electricity market it 
is necessary to commit the electricity to be sold one day 
ahead. 

Due to the stochastic nature of renewal sources, 
like wind, the exact amount of renewal energy produced 
cannot be known in advance. The commitments of 
energy have to be done by using wind speed forecast. 
Wind speed forecast errors lead to a mismatch between 
commitments and generated energy. Magnitude of 
errors increases as prediction horizon moves away. 
Probabilistic forecast becomes the most appropriate way 
of estimating forecast uncertainty. It provides forecast 
of the probability distribution of wind speed for each 
look-ahead time (Gneiting and Larson 2006). 

A probabilistic wind speed forecast at time t is a 
set of m predicted wind speed trajectories for the 
coming future (Moehrlen 2004). They are obtained from 
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different and coherent physical parameterizations of the 
meteorological model utilized. Usually, meteorological 
forecasts have a forecast resolution of one hour for 
look-ahead times up to 48 hours (Pinson and Madsen, 
2009).  

Storage operative management involves deciding 
when to use the stored energy to meet the pre-
commitments. Decisions should take into account data 
concerning to the structure of selling prices and 
penalties, as well as updated wind speed forecast.  

A main issue is to determine the amount of energy 
that should be committed one day ahead to maximize 
the profit. In (Aguado et al, 2009) the committed energy 
was obtained as solution of a sequence of linear integer 
programming problems which use as input data the 
expected wind speed in the look-ahead period. This 
analysis does not consider the uncertainty in the wind 
speed forecast and the operative management of the H2-
tank is addressed in a naïve way: At time t, if more 
energy than committed is produced, then store the 
surplus; if the generated energy is less than 
commitments, then use the stored energy to correct 
deviations. The model provided an economic analysis of 
the viability of such systems and was valid as a first 
approximation to solve a dimensioning problem related 
with the facilities and necessary equipment. 
Nevertheless, the model was not appropriate for the 
system management. As a solution to those drawbacks, 
managers suggested a class of management policies 
based on a more regular and dynamic use of the tank. 
The new strategy, named peaking strategy, is based on 
the conversion of electricity into hydrogen during price 
troughs and the use of the stored hydrogen to produce 
electricity during the day’s demand (thus price) peaks. 
These loading and unloading periods are denoted by 
H2-storage (valley) and H2-release (peaking) periods, 
respectively. Strictly speaking, peaking strategy dictates 
to store energy in valley hours and to release it in the 
peaking hour, giving no further use to the tank. 
However, the possibility of using the stored energy to 
fulfil the energy committed by correcting deviations is 
attractive and worthy to be investigated. This additional 
use for the stored energy requires making new decisions 
at each hour concerning with whether release energy 
when generated energy is below the committed energy 
and whether store energy in the opposite case, that is, 
the generated energy exceeds the committed energy. 
The computational implementation of the peaking 
strategy (Azcárate et al, 2012) allowed the capability of 
use the tank to match the delivery commitments but the 
operative decisions needed to manage the tank were 
fully assumed by the decision maker.  

In this work, we provide the decision maker with 
an optimized strategy to operate the tank. Two 
objectives are considered: an economic one, aiming at 
maximizing the profit from the energy selling and a 
reliability one by maximizing the number of hours in 
which the energy commitments are fulfilled. 

  
 

2. MATHEMATICAL MODEL 
Optimal management policies have to make full use of 
the available information at the decision times. We 
propose operative policies for the storage management 
that benefit from an updated probabilistic wind speed 
forecast, �����, and take into account the structure of 
electricity prices, the hourly committed electricity, 
penalties for mismatch the commitments and the current 
amount of stored energy. 

Two types of scenarios are considered to define an 
operative management policy for the tank: 

• Shortage scenario (A): at time t the generated 
wind energy (G(t)) is less than the committed 
energy (C(t)). In this case, should the stored 
energy in the tank be used to match the 
committed energy? 

• Surplus scenario (B): at time t the generated 
wind energy is greater that the committed 
energy. In this case, should the surplus of 
energy be stored in the tank for its future use? 

 
Optimal management policies are obtained as 

solution of a sequence of rolling horizon stochastic 
optimization problems. At each time ��, an optimization 
problem with decision variables 	���	�, ���	�, 	 �
��, ��  1,… , �� � 1 is formulated, where �� represents 
the peaking hour. In a shortage scenario, decision 
variable ���	� represents the amount of energy 
recovered from the tank to match the committed energy 
in hour i. In a surplus scenario, ���	� represents the 
amount of energy stored in the tank for its future use. 

Variables T(i) represents the amount of energy 
stored in the tank in hour i. Deviations ��

�	and ��
�are 

introduced for modeling purposes and defined by:   
��	� � ��

�  ��
� � ��	�. 

The objective function includes both economical 
and reliability criteria. The economical objective is 
composed by two terms. The first one assesses the 
profit in time interval ���, ���, under management policy 
�, ����, ��, by using the probabilistic forecast ����� 
and the energy prices. Energy prices include different 
values for commitments, surplus sales (above 
commitments) and penalties for shortfalls in the pre-
committed energy. The second term in the economical 
objective function ��������, ��, is an assessment of the 
energy that could remain stored in the tank at the end of 
the peaking hour, and is expressed as follows: 

 
��������, �� �  ! ∗ #���∗� ∗ ������ 

 
where ��∗  represents the peaking hour of the next 
peaking cycle, #���∗� the selling price of committed 
energy at that peaking hour and  ! is a parameter. 

 
The objective function can be expressed as  
 

max
'

	()�*+��	����, ��  ��������, ��� 
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where � is the vector of decision variables, ����� is the 
probabilistic wind speed forecast and ()�*+�,. - stands 
for the expected value of the compound benefit 
function.  

The consideration of only economic criteria leads 
to use the tank for correction of errors when these 
corrections provide a profit. In order to improve the 
reliability, the tank should be used to correct errors even 
with no direct economic benefit. Reliability objective 
function .���, �� aims to maximize the number of 
hours at which the energy commitments are fulfilled.  

The constraints of the optimization problem 
consider the capacity of the H2-tank, the H2-tank 
update and the efficiencies of the H2-conversion and 
recovery processes. 

 
3. PROBABILISTIC WIND SPEED FORECAST 
A key feature in this management strategy model is the 
updated probabilistic wind speed forecast. The main 
focus of this work is to study the influence of the 
probabilistic wind forecast accuracy in the operative 
management of a wind energy system with storage. To 
conduct the computational study our model simulates 
the probabilistic wind speed forecast at each hour 
through the simulation of m wind forecast trajectories. 
The model handles prediction errors as follows. 
Historical wind speed data are used to simulate 
meteorological predictions by adding an error to each 
item of real energy data. The error is obtained by 
combining an absolute error and a relative error. The 
maximum relative error depends on the prediction 
horizon and is represented by a set of non-decreasing 
polynomial functions limited by the initial and final 
maximum relative errors. In order to smooth the 
predicted energy curve, we keep a record of past errors 
to generate an auto-correlated error series. The 
parameters in this error forecast simulation model are 
used to represent the accuracy of the meteorological 
forecast.  

 Concretely, we use the following model:  
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We consider different non-decreasing functions 

representing relative_error(t). Specifically, an initial 
(IRE) and a final (FRE) relative error are introduced as 
parameters of the model, and a set of order-two 
polynomial non-decreasing functions (relative_error(t) 
= A+Bt+Ct2) limited by both IRE and FRE values are 
obtained as solutions of the following system of 
equations, where t=1,…,T represents the forecast time 
horizon: 
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As an example, Figure 1 shows a set of functions, 

with IRE=5, FRE=40 and T=60.  For more details 
about this wind speed forecast simulation model, the 
reader is referred to (Mallor et al, 2009). 

 

 
Figure 1: Relative error functions 

 
An example illustrating the simulation of the 

probabilistic wind speed forecast from hour ��	to hour 
�� (band 1) and an updated probabilistic forecast at hour 
�� (band 2) is shown in figure 2. The variability of the 
errors in probabilistic wind speed forecast decreases as 
the updated prediction gets closer the peaking hour. 

 

 
Figure 2: Probabilistic Wind Speed Forecast 
 
 
 

4. USEFULLNESS OF THE SIMULATION-
OPTIMIZATION MODEL 

 
A simulation based optimization methodology is 
proposed for the assessment of the management. We 
develop a discrete event simulation model for a real 
inspired renewable energy system with H2-based 
storage, moving the simulation clock in 1-hour steps. 
The simulation model incorporates the important 
equipment that compose the wind-H2 energy system 
and the random elements of the stochastic environment 
in which the energy system evolves. The wind farm is 
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characterized by its power capacity and its wind-power 
conversion curve; the hydrogen tank is described by its 
capacity; and the electrolysers, compressor and the 
different technologies involved in the recovery process 
are described both by their capacities and their 
efficiency curves. Our study assumes the availability of 
a long series of historical data containing hourly wind 
speed. A detailed description of such real energy 
systems can be found in (Aguado et al, 2009). The 
model allows the determination of different peaking 
strategies. 

At each hour t, we simulate the wind speed 
forecast and then the amount of energy generated. 
Taking into account this amount of energy, the 
hydrogen stored in the tank and the pre-committed 
supply for this hour, the amount of energy to be stored 
or released into the grid is determined. This decision is 
made according to the optimization problem described 
in section 2, implying the simulation of the updated 
probabilistic wind speed forecast. When the simulation 
clock reaches the time at which the energy supply 
commitments for the following day must be announced, 
these values are determined by the cost and probability 
strategy described in (Azcárate et al, 2011). 

Global system assessment is made by considering 
two objective functions: reliability and profit. 
Economical objective function is calculated considering 
energy prices for commitments, energy prices for 
surplus sales (above commitments) and penalties for 
shortfalls in the pre-committed energy. In order to 
compare the effect of the use of the tank to correct 
errors, we consider as economical objective function the 
ratio between the expected profit obtained with the 
operative management strategy and the expected profit 
obtained without using the tank to correct errors. 
Reliability objective function is measured as the 
percentage of hours in which commitments have been 
accomplished.  

This proposed simulation based optimization 
methodology allows the assessment of the management 
strategy considering different price structures and 
efficiencies of the whole storage system. Preliminary 
results show that price structures with very high 
penalties for shortfalls in commitments and surplus with 
almost no value make economically attractive the use of 
the tank to correct errors in normal hours. This also 
depends on the efficiency of the whole storage system 
and on the probabilistic wind forecast accuracy. 

 
 

5. CONCLUSIONS 
In this paper we have mathematically modelled the 
problem of optimally operating the storage of a renewal 
energy system. This mathematical model describes all 
important elements of the energy system and, 
furthermore, it incorporates the variability of both 
energy prices and renewable resource availability. Main 
features of this model are the incorporation of a 
probabilistic forecast for the renewal energy which is 
dynamically updated and the simultaneous 

consideration of economical profit and reliability 
objectives. 

The variability in the structure of the energy prices 
and penalties influences the commitment strategy and, 
together with the system efficiency, the cost of 
correcting errors. The degree of uncertainty in the 
renewal forecast affects the reliability of the system as 
provider of energy. And, of course, differences in the 
amount and variability pattern of the renewal resource 
impact in the global performance of the energy system.  
The consideration of all these elements together 
requires an extensive design of simulation experiments 
to assess the influence of each one of them. 
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