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ABSTRACT 

This paper reports on the progress of a case study 

exploring the application of simulation and formal 

methods to the development of a cyber-physical smart 

grid voltage control system. The control system is 

required to monitor voltage across the low-voltage 

network and adjust it accordingly to ensure it is within 

required bounds. Formal methods are used to ensure 

that the control system fulfils its requirements, and 

simulation is used to validate the system and its 

requirements. It is demonstrated that using both formal 

verification and validation within a single toolset 

provides both an increased level of assurance that the 

system is correct and reduced development costs due to 

early identification of errors. In essence the 

methodology described in this paper, when correctly 

applied, improves system level design at the initial 

phase of systems engineering. 

 

Keywords: continuous models, formal methods, 

Modelica, Event-B 

 

1. INTRODUCTION 

The modern power distribution network requires more 

intricate control methods compared to the traditional 

top-down approach, due to the increased uptake of 

micro-generation and the requirement to reduce energy 

waste alongside growing demand. Traditional SCADA 

control methods using operator driven controls are not 

likely to be practical, and hence automation must be 

applied in the distribution network. Providing assurance 

on these automatic closed-loop control techniques is 

extremely challenging, due to the overwhelming 

number of scenarios and potential inputs that have to be 

considered. Empirical testing may be impracticable due 

to the durations required to achieve suitable results, and 

even then it provides no guarantee that a representative 

range of conditions have been uncovered. Solutions that 

are designed to react dynamically to such a wide array 

of inputs are also difficult to test on anything but a full 

deployment on a real network. 

1.1. ADVANCE 

Through the FP7 ADVANCE project (Advanced 

Design and Verification Environment for Cyber-

physical System Engineering) Critical Software 

Technologies and Selex ES are investigating an 

alternative approach to better support the verification 

and validation of cyber-physical systems (Edmunds, 

Colley, and Butler 2012; Colley and Butler 2014). 

Cyber-physical systems are characterized as computing 

systems that control physical systems.   

Within the ADVANCE toolset, discrete models of 

the control system and supporting elements are 

developed and verified, and then co-simulated with 

continuous models of the environment to validate the 

requirements. The advantage is twofold; first, the 

control system is verified using mathematical proof, to 

ensure the logic is sound and the requirements of the 

system are complete and consistent. The properties that 

the control system is expected to uphold – for example, 

maintaining voltage levels within given thresholds – are 

specified formally as invariants. Secondly, the control 

system is validated through simulation against realistic 

environmental inputs, during which any violation of the 

formal invariants is highlighted. To support the 

simulation activities, test cases are automatically 

generated which are used to check that suitable test 

coverage has been achieved. In all, this provides a 

higher level of assurance and confidence on the system 

before it is deployed or even physically tested. It has the 

potential to reduce engineering costs by identifying 

issues early in the system’s lifecycle. 

 

1.1.1. Discrete Models 

The discrete models are specified using the Event-B 

modelling language (Abrial 2010). Event-B is 

developed over set theory, and is used to define abstract 

state machines consisting of events (transitions) and 

variables, where the events can change the state of the 

variables. This means that once a system is modelled in 

Event-B, it can be analysed formally, and 

unambiguously.  
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Within the ADVANCE project, the Rodin toolset 

is being actively developed. Rodin is an Event-B plugin 

for the Eclipse framework that allows for the 

development and analysis of Event-B models (Abrial et 

al. 2010). Moreover, Rodin provides the capability for 

formal proofs to be carried out within classical first 

order logic, which allows for the developer to 

mathematically determine whether certain properties of 

the system – i.e. invariants – hold under all 

circumstances.  

It is also possible to explore the validity of the 

invariants through simulation and model-checking of 

Event-B models within Rodin. This is advantageous as 

it allows for not only determining whether the system 

violates a property, but also how it violated the property 

by providing an execution trace of the system.  

 

1.1.2. Continuous Models 

The continuous models are specified using Modelica, an 

open, object-oriented, multi-domain, modelling 

language (Fritzson 2010). Conceptually, Modelica is 

similar to the Simscape package of Simulink, in that it 

allows for physical systems to be specified by 

connecting various blocks together. For example, these 

blocks could represent a resistive electrical load, or 

rotational mechanics. Importantly, each block contains 

variables (discrete and continuous) and their defining 

equations, which are either simple equalities or 

differential equations. Modelica was chosen due to its 

open nature; however it is possible to use other tools to 

create the continuous models. 

Using a Modelica simulation tool, such as 

OpenModelica, it is possible to simulate the physical 

model to determine how it behaves. The simulated 

model is inspected to investigate its behaviour over 

time, typically by plotting the time-evolution of 

different variables in the model. This provides feedback 

as to the correctness of the physical model; i.e. it is 

established whether the model exhibits the correct 

behaviour before co-simulation with the discrete 

models. 

In this work, it is required that the Modelica 

models are converted into a binary format (that includes 

the differential equation solver), so that it is possible for 

Rodin to import and use them. 

 

1.2. Overview 

The paper is structured as follows: Section 2 introduces 

the case study around the low-voltage network control, 

Section 3 overviews related works, Section 4 discusses 

the modelling techniques required for the case study, 

and Section 5 gives an overview of the simulations 

undertaken and the results obtained so far. Section 6 

provides concluding remarks.  

 

2. CASE STUDY OVERVIEW 

One of the case studies used to evaluate the ADVANCE 

methodology during the project concerns the 

development of an algorithm which provides automated 

control of the power distribution in a low-voltage 

network. The high level architecture of the case study is 

depicted in Figure 1. 

 

 

Figure 1: Case Study Architecture 

 

A transformer with an On-Load Tap Changer 

(OLTC) is installed at a secondary substation, along 

with reporting units which are installed approximately 

half way and at the end of each feeder. The OLTC is 

capable of changing the transformer ratio through a 

number of discrete steps, providing stepped regulation 

of the output voltage. Reporting units measure the L-N 

(Live-to-Neutral) voltage for each phase of the feeder 

they are connected to and report their measurements to 

the substation. 

The goal is for the algorithm to control the voltage 

on the low-voltage network efficiently, and ensure it 

remains within statutory limits. This is achieved by 

giving the algorithm the capability to set the target 

voltage setting for the OLTC, which in turn will select 

the most appropriate tap position to fulfil the target. The 

algorithm determines the target voltage for the OLTC 

by monitoring the voltage values provided by the 

reporting units.  

Historically, there has not been a substantial issue 

with maintaining voltage levels across the network; 

transformer settings were determined during substation 

installation and rarely changed. However, with the 

increasing adoption of consumer micro-generation, 

typically in the form of photovoltaic cells, energy flow 

is now exhibited both towards and away from the 

substation. Additionally, increasing use of low carbon 

technologies, including electric vehicles and heat 

pumps, are increasing the demand on the network. The 

effect is a more dynamically changing voltage on the 

network, which increases the risk of the voltage in parts 

of the network going outside of the statutory limits. As 

the penetration of low carbon technologies increases 

over the coming decade, the need for more sophisticated 
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voltage management solutions will become ever more 

prevalent. 

The algorithm considered in the case study is 

structured as described in Figure 2, where the busbar 

variable represents the voltage on the low-voltage side 

of the transformer. The intention is that the algorithm 

periodically reads the inputs, using reports which are 

sent by the reporting units monitoring different points 

of the network, and then every k time steps executes a 

number of rules that calculates the new target voltage 

for the OLTC. 

 

 

Figure 2: Algorithm Pseudo-Code 

 

The properties of the system that need to be 

checked – which are specified in the models as Event-B 

invariants – are derived from the stakeholder 

requirement on the system to keep the voltage within 

required bounds at all points on the network. The 

challenge is in verifying the behaviour of the algorithm 

against these invariants, taking into account realistic 

power throughput as well as the effect of late or missing 

reports from the reporting units, and electrical faults on 

the network. 

It is clear that scenarios such as this are archetypal 

of modern cyber-physical systems; where there are 

numerous computing systems all cooperating over 

potentially unreliable communications channels to 

achieve a common goal. Further, the unreliable nature 

of the communications mechanism means that it is 

challenging for formal methods alone to verify this 

system – typically a formal approach would assume that 

the communications mechanisms are reliable. In fact, 

this is where simulation plays a critical role to further 

assist in verifying the system.  

In the following sections, it is considered what the 

discrete and continuous models in this scenario are, and 

how they are first verified formally and then simulated 

together to verify the system as a whole. But first, 

related works are considered. 

 

3. RELATED WORK 

It is well known that formal methods have been 

successfully applied to large industrial software 

systems, a recent survey of these has been compiled by 

Jim Woodcock (Woodcock et al. 2009). In an attempt to 

allow for formal methods to be applied to systems that 

are dependent on the physical wold (i.e. cyber-physical 

systems), formal hybrid methods were developed 

(Henzinger 2000). These are methods that combine 

discrete and continuous constructs. However, due to the 

complexity of these models and the resulting infinite 

nature, their application was mainly limited to academia 

with the notable exception of KeYmaera (Platzer and 

Quesel 2008). 

In parallel, a simulation methodology evolved for 

developing systems that are tightly coupled with the 

physical world. Coming out of these simulation based 

methods was the need for combining heterogeneous 

models and reusing models (potentially between 

different tools). The solution to these needs became 

known as co-simulation. Ptolemy was one of the first 

tools to use co-simulated heterogeneous models, 

connected in an arbitrarily hierarchical fashion (Buck 

1994; Chang, Kalavade, and Lee 1996). In recent years, 

two non-proprietary standards for co-simulation have 

emerged: FMI and DESTECS (Blochwitz et al. 2011; 

Pierce et al. 2012). These standards necessitate that the 

model to be simulated contains all the solvers that it 

requires, so it can be treated as a black box, and thus is 

portable between tools. 

It was inevitable that co-simulation would be used 

as a mechanism to combine formal discrete models and 

continuous models (Živojnovic and Heinrich 1996; 

Fitzgerald et al. 2010). One directly relevant integration 

of these two approaches was by George Hackenberg, 

where formal modelling techniques were applied to the 

smart grid domain (Hackenberg et al. 2012). A bespoke 

environment based on the FOCUS approach (Broy and 

Stølen 2001) was used. This allowed for the creation of 

discrete models representing the control systems of the 

appliances in a number of houses. Models of the low 

and medium voltage power distribution network were 

also created, and simulated with the discrete models. 

The fundamental approach is similar to that applied in 

this work, however, it demonstrated a proof of concept 

and did not apply the tool to an industrial problem. In 

contrast, this work is assisting in the development of an 

industrial system. 

Vitaly Savicks and Jens Bendisposto developed the 

plugin to the Rodin toolset that has allowed for the co-

simulation of Event-B and Modelica models described 

in this paper (Savicks et al. 2013). 

 

4. MODELLING  

Elements of the system were modelled using both the 

Event-B and Modelica modelling languages. Event-B 

was used to model the algorithm, the reporting units, 

and an abstract communication network between these 

components. This created an encompassing discrete 

model of the cyber portion of the system. The physical 

models were modelled using Modelica, and consist of 

the low-voltage power network – including domestic 

customer demand models and inputs from photovoltaic 

sources – and the OLTC, complemented with a 

stochastic model specifying the occurrence of 

communication outages. The interaction between these 
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models is depicted in Figure 3, which also forms the 

basis of the simulation setup described in Section 5.  

 

 

Figure 3: Modelling Strategy 

 

From Figure 3, it can be observed that the discrete 

Event-B models represent the elements to be tested, 

whereas the continuous models represent the 

environment against which the system must be verified.  

   

4.1. Event-B Models 

Different strategies were required for modelling the 

Event-B models, each of which are detailed in this 

section. 

 

4.1.1.  Control Algorithm 

The control algorithm was modelled using a state 

machine plugin for the Rodin framework, which 

allowed for a UML-style hierarchical approach to 

modelling the algorithm (Snook and Butler 2006). First, 

the high level state was considered, in which the 

algorithm can enter or leave a ‘safe’ mode. This safe 

mode is entered if the information the algorithm has 

about the network is not sufficiently up-to-date to make 

a decision; for instance, in the case that communication 

from a large number of reporting units is lost. A 

simplified example of a state machine representing this 

top-level view, generated in Rodin, is shown in 

Figure 4. 

 

 

Figure 4: Event-B State Machine 

 

These state machines can be translated to Event-B 

within Rodin, and further detail added to the transitions 

and states. A subset of the Event-B code corresponding 

to the state machine in Figure 4 is represented below in 

Figure 5. 

 

 

Figure 5: Event-B code 

 

The transitions in Figure 4 are translated into 

events, each of which has a number of guards and 

actions. The actions update the variables in the model, 

and the guards dictate when the events can occur. For 

example, the guard @grd1 in the event 

SetTargetVoltage in Figure 5 ensures that the target 

voltage can only be changed when the algorithm is in 

normal mode. The action @act1 in the same event 

assigns a new value to the variable that represents the 

target voltage. 

Invariants are specified in each Event-B model, 

which represent the conditions, or requirements, that the 

model is expected to uphold. Proof obligations are 

generated to unambiguously determine whether each 

event maintains the invariants. For example, the 

invariant @inv1 in Figure 5 represents the requirement 

that the algorithm has to enter the safe mode if the 

number of failed communication links exceeds a 

particular threshold. In order to prove that the event 

ContinueNormalOperation maintains this invariant, a 

guard has to be added to the event – @grd2 – which 

only allows the model to exit the safe mode if the 

communication falls back below this threshold.  

Further detail to the algorithm model was added 

through a number of additional modelling levels 

(refinements). This approach of defining a chain of 

models, each adding more detail, is archetypal of 

modelling in Event-B. It allows for the key elements of 

the system to be captured, whilst omitting any details 

which are not relevant to the properties being tested. An 
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example of a refinement of the 

ContinueNormalOperation event in Figure 5 is shown 

in Figure 6. Additional events, guards, actions, variables 

and invariants can be added at each refinement step. 

 

 

Figure 6: Refined Event 

 

Further guards and actions have been added to the 

event in Figure 6 as part of the refinement. In addition, 

guard @grd2 of the abstract event in Figure 5 has been 

replaced by the more concrete guards @grd3 and 

@grd4, which represent the communication status of 

the mid and end points of the network separately. 

Further proof obligations are generated in the model in 

order to determine the consistency between the 

refinement levels. These proof obligations (once 

discharged) ensure that it is not possible to violate the 

invariants of more abstract levels of the model. This 

allows for the models to be produced in an iterative 

fashion alongside design or requirements generation; 

additional features or requirements can be added to the 

model as a refinement, and insurance can be generated 

that they are consistent with the requirements already in 

place.     

 

4.1.2. Communications Network 

The communications network was modelled directly in 

the Event-B language. Different network topologies 

were considered for comparison and evaluation, 

including a centralised and mesh network. Modelling 

the communications network followed a similar top-

down approach, in which the first model is a generic 

communications model of abstract send and receive 

events, to which details of the particular network 

topology were added in subsequent refinements. 

Moreover, adding details into subsequent models in this 

manner has allowed for model reuse. Different 

communication networks – which use different 

protocols – can be (and have been) branched off the 

main development. 

 

4.1.3. Reporting Units 

The reporting units used a slightly different strategy, 

namely, decomposition. This followed an approach 

where the wider system (including data centres) was 

first abstractly formalised, then decomposed into sub-

systems. Only one of these sub-systems was further 

developed into a model of the reporting unit. This 

approach of first defining the system, and then 

extracting the portion of the system that is to be realised 

ensured that the reporting units fulfilled the 

requirements of the wider system. The decomposition is 

facilitated by a Rodin plugin, developed during the 

ADVANCE project. 

 

4.1.4. Formal Proof 

As mentioned in the previous sections, formal proof 

was used to verify the correctness of the Event-B 

models. This not only ensured that properties internal to 

each element (algorithm, reporting units and 

communication network) were preserved correctly, but 

also highlighted several issues with the system – some 

of which were previously unknown – as a result. These 

issues were highlighted due to the inability to discharge 

the relevant proofs. 

 

4.2. Modelica Models 

The three Modelica models – the low voltage network, 

OLTC and specification of communication outages – 

were developed using different techniques: equations, 

state machines, and stochastic specification.  

The low voltage network model encapsulates the 

topology of the power network – i.e. 11kV power 

source, transformer, feeders, houses and voltmeters – 

along with the standard electrical equations of power 

networks. A block representation of the top level model 

of the low voltage network is depicted in Figure 7. In 

addition to Figure 7, the models also contain data that 

represents consumption and production of power for 

each consumer. This data is generated by incorporating 

the probabilistic outputs of the CREST project into the 

model (Richardson 2011). The CREST models are very 

detailed and consider the number of occupants, when 

and which domestic appliances are used, when lights 

are used, and PV contributions. 

 

 

Figure 7: Low Voltage Top Level Model 
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The OLTC model (represented by the TapCon 

block in Figure 7 and elaborated in Figure 8) monitors 

the voltage at the transformer and changes the tap 

position when the voltage deviates from the target by 

more than a specified amount, mimicking the automated 

behaviour of the actual OLTC. Although the OLTC 

contains both discrete and continuous behaviour, it was 

modelled in Modelica as it is an off-the-shelf device 

representing part of the environment for the Event-B 

models. The OLTC was modelled using the Modelica 

state machine library, and is depicted in Figure 8, where 

the boxes represent states and the black bars represent 

transitions. 

 

Figure 8: OLTC State Machine  

 

The communication outage model is a stochastic 

model in Modelica. Based on industrial statistics it 

determines at what time, and for how long, a given 

communication link fails. The implementation of the 

stochastic models within Modelica is canonical, and 

represented by a sequence of probabilities (and 

associated actions) that partition the interval      , then 

at discrete time steps, using the Peter Fritzson pseudo 

random number generator, generate a number in       
and select the corresponding action from the sequence. 

In this case the action determines how long a 

communication link fails for.  

Using industrial stochastic based simulation of the 

communication link failures provides a fast and 

efficient means to analyse the system for robustness 

under realistic operating conditions. 

 

5. SIMULATION 

Within the ADVANCE framework there are two types 

of simulation. The first, simulates the discrete models 

using the ProB model-checker. The second, simulates 

the discrete and continuous models together and is 

known as co-simulation. 

 

5.1. Discrete Model Animation 

To aid in verification of the discrete Event-B models, 

the model-checker tool ProB is used (Leuschel and 

Butler 2003). This allows for the models to be executed 

within the Rodin environment to explore their 

behaviour. This provides instant feedback to the model 

developers as to whether the models have the intended 

semantics. It is possible to use the model-checker to 

analyse the models and determine whether they 

deadlock or violate requirements. In either case, when 

one of these scenarios is identified the model-checker 

outputs an execution trace from the initial state of the 

model to the state that violates the condition. This 

allows for the model developer to quickly identify cases 

where the model does not behave as intended, fix the 

problems, and reanalyse. An example of this is shown 

in Figure 9 below. A violated condition (invariant) has 

been found and is highlighted in bold. The trace of 

events that lead to this violation is displayed in the 

History tab. The state of the variables in the model can 

also be examined at each step of the trace.  

 

 

Figure 9: ProB Simulation 

 

It is also possible to define graphical animations 

that depict the state of the system while it is being 

simulated in ProB. For example, in the case of the mesh 

communications network mentioned previously, an 

animation was developed that showed the nodes, the 

status of the communications links, and the volume of 

packets transiting each link. This is depicted in the 

example in Figure 10, where the boxes are nodes, the 

active links are represented by the solid lines, and the 

width of these lines represents the volume of data traffic 

on the link. 
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Figure 10: Mesh Network Animation 

 

However, this type of discrete model simulation 

does not explore whether the models behave correctly 

when in situ, and the wider question of system 

validation is not considered – it is geared towards 

verifying that the models fulfil their requirements. 

 

5.2. Co-Simulation 

To validate that the system fulfils its intended purpose, 

the use of co-simulation is employed. The Event-B 

models and Modelica models are simulated in parallel, 

such that the outputs of one model become the inputs of 

another model. This is achieved through the tools 

developed within the ADVANCE project (Savicks 

2013), and is fully integrated into the Rodin 

environment. 

The architecture of the simulation framework is 

depicted in Figure 11. It is possible to integrate a 

number of Event-B and Modelica models into a single 

simulation. The configuration is used to define which 

inputs and outputs are linked together, and the size of 

the time steps of the models. Thus the simulation engine 

manages global temporal aspects of the simulation, it 

tells each model when to execute, and in the case of the 

Modelica models for how long. See Figure 12 for 

pseudo code depicting the functionality of the engine. 

The performIO step is responsible for copying values 

between input and output ports of the models; this is 

called for each model before any model starts 

execution, to ensure that the outputs are not overridden 

with new values before they are read by the other 

models. The current implementation of the engine does 

not allow for one model to interrupt the simulation, e.g. 

in response to an event. To mitigate this issue, the time 

steps of the models must be set sufficiently small 

enough to respond to outputs from other models. 

 

 

Figure 11: Conceptual View of Co-Simulation 

 

 

Figure 12: Simulation Algorithm Pseudo Code 

 

The configuration of the co-simulation within this 

case study is defined in Figure 3, where the arrows 

depict the linking of an output port on one model to the 

input port on another model. Additionally, timing 

configuration data is required. This details how each 

model perceives the progress of time with respect to the 

global time. For instance, the reporting units have a 

much higher clock cycle time than the algorithm cycle 

time, and the communication network needs to operate 

with smaller intervals to ensure packets are delivered at 

a realistic pace. The Modelica models are less 

dependent upon time, but still need to know how much 

time has passed and the length of the computation step 

required. Here, the low voltage network model operates 

at the same time intervals as the reporting units, to 

ensure that the information detected by the sensors is 

current. 

The discrete models are simulated using the same 

technique as described previously, namely, with the 

ProB model-checker. Whereas, the continuous nature of 

Modelica models require the use of differential equation 

solvers. These solvers are embedded into the models 

when the model is compiled into a functional mock-up 

unit (FMU). An FMU is a binary representation of a 

model, typically produced by a Modelica toolset 

(Blochwitz et al. 2011). 

Within Rodin, once the models have been 

configured, the simulation begins, which results in two 
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artefacts: time series for chosen variables and execution 

traces of the discrete models. 

Within the domain of simulation, time series are 

common place, but taking advantage of the underlying 

framework of Rodin it is also possible to drill down into 

the execution traces of the discrete components. Thus, it 

is possible to understand exactly why a model makes a 

decision. The inputs to the model are plotted, the 

internal state of the model is examinable and the 

commands it executed are recorded. This provides a 

high-fidelity view of the simulation, which other 

toolsets often lack. 

 

5.2.1. Results 

The initial simulations pinpointed serious issues with 

the discrete model of the algorithm entering and leaving 

the designated safe mode at the wrong times. This is 

interesting as the models were formally developed; it in 

fact underlines the issue that the requirements did not 

fully define the safe mode behaviour. This was 

identified by noticing that the target was not set 

correctly in the simulations, then further investigation 

into the execution traces showed that the algorithm was 

entering safe mode unnecessarily. After modifying the 

conditions for entering safe mode, this issue was fixed.  

Subsequent simulations indicated under which 

conditions the solution could maintain the voltage 

bounds. Under ideal circumstances the algorithm was 

able to maintain the voltage; however, when the feeders 

were unbalanced the voltage on some feeders could not 

be maintained within the UK regulated +10%/-6% 

bounds. This is depicted in Figure 13, where the thick 

line denotes the lower bound at 216. In this example the 

upper bound, at 253, was not breached. 

 

 

Figure 13: Feeder Violations (V) 

 

Further observations relating to the general 

behaviour of the system were also raised. The system is 

heavily dependent on the medium voltage input. A 

simulated medium voltage variation (from a nominal 

6.7 L-N KV or 11 L-L KV) is depicted in Figure 14, 

and is seen to be mirrored in the low voltage 

transformer output in Figure 15. Figure 15 also shows 

the relationship between the target set by the algorithm 

(dotted blue line) and the busbar voltage (on the low-

voltage side of the transformer), which is as expected; 

notably not every target change corresponds to a tap 

change. The correlating changes in tap position for this 

example are shown in Figure 16; each discrete 

increment changes the busbar L-L (Line-to-Line) 

voltage by 8V. 

 

 

Figure 14: MV Input (KV) 

 

 

Figure 15: Busbar and Target (L-L Voltage (V)) 

 

 

Figure 16: Tap Position 

 

6. CONCLUSION 

In this paper, the low-voltage smart energy case study 

of the ADVANCE project has been described and the 

initial results presented. The paper also overviewed the 

ADVANCE methodologies, with special emphasis on 

cyber-physical systems engineering. 

The advantages of the ADVANCE framework are 

twofold: 

 Formal development and verification of 

control systems, and 

 Validation of the developed system against 

plant models. 

Further, a single development environment is used for 

the formal development and analysis, with the freedom 

to integrate with any FMU plant model. In this paper, 

all plant models were developed using Modelica. 

Changes are made to the formal models if issues 

are found through the verification or validation, and 

retested against the environment until a satisfactory 

solution is found.  

This allows for the system to be formally analysed, 

simulated and improved at an early phase of the system 

life cycle, hence reducing time to market of complex 

systems. 
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