
A RIGOROUS APPROACH FOR

SMART GRID SYSTEMS ENGINEERING USING CO-SIMULATION

Brett Bicknell
(a)

, Karim Kanso
(b)

, José Reis
(c)

 , Neil Rampton
(d)

, Daniel McLeod
(e)

(a,b,c)

 Critical Software Technologies, UK
(d,e)

 Selex ES, UK

{
(a)

BBicknell,
(b)

KKanso,
(c)

JReis}@criticalsoftware.co.uk

{
(d)

Neil.Rampton,
(e)

Daniel.Mcleod}@selex-es.com

ABSTRACT

This paper reports on the progress of a case study

exploring the application of simulation and formal

methods to the development of a cyber-physical smart

grid voltage control system. The control system is

required to monitor voltage across the low-voltage

network and adjust it accordingly to ensure it is within

required bounds. Formal methods are used to ensure

that the control system fulfils its requirements, and

simulation is used to validate the system and its

requirements. It is demonstrated that using both formal

verification and validation within a single toolset

provides both an increased level of assurance that the

system is correct and reduced development costs due to

early identification of errors. In essence the

methodology described in this paper, when correctly

applied, improves system level design at the initial

phase of systems engineering.

Keywords: continuous models, formal methods,

Modelica, Event-B

1. INTRODUCTION

The modern power distribution network requires more

intricate control methods compared to the traditional

top-down approach, due to the increased uptake of

micro-generation and the requirement to reduce energy

waste alongside growing demand. Traditional SCADA

control methods using operator driven controls are not

likely to be practical, and hence automation must be

applied in the distribution network. Providing assurance

on these automatic closed-loop control techniques is

extremely challenging, due to the overwhelming

number of scenarios and potential inputs that have to be

considered. Empirical testing may be impracticable due

to the durations required to achieve suitable results, and

even then it provides no guarantee that a representative

range of conditions have been uncovered. Solutions that

are designed to react dynamically to such a wide array

of inputs are also difficult to test on anything but a full

deployment on a real network.

1.1. ADVANCE

Through the FP7 ADVANCE project (Advanced

Design and Verification Environment for Cyber-

physical System Engineering) Critical Software

Technologies and Selex ES are investigating an

alternative approach to better support the verification

and validation of cyber-physical systems (Edmunds,

Colley, and Butler 2012; Colley and Butler 2014).

Cyber-physical systems are characterized as computing

systems that control physical systems.

Within the ADVANCE toolset, discrete models of

the control system and supporting elements are

developed and verified, and then co-simulated with

continuous models of the environment to validate the

requirements. The advantage is twofold; first, the

control system is verified using mathematical proof, to

ensure the logic is sound and the requirements of the

system are complete and consistent. The properties that

the control system is expected to uphold – for example,

maintaining voltage levels within given thresholds – are

specified formally as invariants. Secondly, the control

system is validated through simulation against realistic

environmental inputs, during which any violation of the

formal invariants is highlighted. To support the

simulation activities, test cases are automatically

generated which are used to check that suitable test

coverage has been achieved. In all, this provides a

higher level of assurance and confidence on the system

before it is deployed or even physically tested. It has the

potential to reduce engineering costs by identifying

issues early in the system’s lifecycle.

1.1.1. Discrete Models

The discrete models are specified using the Event-B

modelling language (Abrial 2010). Event-B is

developed over set theory, and is used to define abstract

state machines consisting of events (transitions) and

variables, where the events can change the state of the

variables. This means that once a system is modelled in

Event-B, it can be analysed formally, and

unambiguously.

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

65

mailto:BBicknell@criticalsoftware.co.uk
mailto:BBicknell@criticalsoftware.co.uk
mailto:KKanso@criticalsoftware.co.uk
mailto:JReis@criticalsoftware.co.uk
mailto:neil.rampton@selex-es.com
mailto:Daniel.Mcleod@selex-es.com

Within the ADVANCE project, the Rodin toolset

is being actively developed. Rodin is an Event-B plugin

for the Eclipse framework that allows for the

development and analysis of Event-B models (Abrial et

al. 2010). Moreover, Rodin provides the capability for

formal proofs to be carried out within classical first

order logic, which allows for the developer to

mathematically determine whether certain properties of

the system – i.e. invariants – hold under all

circumstances.

It is also possible to explore the validity of the

invariants through simulation and model-checking of

Event-B models within Rodin. This is advantageous as

it allows for not only determining whether the system

violates a property, but also how it violated the property

by providing an execution trace of the system.

1.1.2. Continuous Models

The continuous models are specified using Modelica, an

open, object-oriented, multi-domain, modelling

language (Fritzson 2010). Conceptually, Modelica is

similar to the Simscape package of Simulink, in that it

allows for physical systems to be specified by

connecting various blocks together. For example, these

blocks could represent a resistive electrical load, or

rotational mechanics. Importantly, each block contains

variables (discrete and continuous) and their defining

equations, which are either simple equalities or

differential equations. Modelica was chosen due to its

open nature; however it is possible to use other tools to

create the continuous models.

Using a Modelica simulation tool, such as

OpenModelica, it is possible to simulate the physical

model to determine how it behaves. The simulated

model is inspected to investigate its behaviour over

time, typically by plotting the time-evolution of

different variables in the model. This provides feedback

as to the correctness of the physical model; i.e. it is

established whether the model exhibits the correct

behaviour before co-simulation with the discrete

models.

In this work, it is required that the Modelica

models are converted into a binary format (that includes

the differential equation solver), so that it is possible for

Rodin to import and use them.

1.2. Overview

The paper is structured as follows: Section 2 introduces

the case study around the low-voltage network control,

Section 3 overviews related works, Section 4 discusses

the modelling techniques required for the case study,

and Section 5 gives an overview of the simulations

undertaken and the results obtained so far. Section 6

provides concluding remarks.

2. CASE STUDY OVERVIEW

One of the case studies used to evaluate the ADVANCE

methodology during the project concerns the

development of an algorithm which provides automated

control of the power distribution in a low-voltage

network. The high level architecture of the case study is

depicted in Figure 1.

Figure 1: Case Study Architecture

A transformer with an On-Load Tap Changer

(OLTC) is installed at a secondary substation, along

with reporting units which are installed approximately

half way and at the end of each feeder. The OLTC is

capable of changing the transformer ratio through a

number of discrete steps, providing stepped regulation

of the output voltage. Reporting units measure the L-N

(Live-to-Neutral) voltage for each phase of the feeder

they are connected to and report their measurements to

the substation.

The goal is for the algorithm to control the voltage

on the low-voltage network efficiently, and ensure it

remains within statutory limits. This is achieved by

giving the algorithm the capability to set the target

voltage setting for the OLTC, which in turn will select

the most appropriate tap position to fulfil the target. The

algorithm determines the target voltage for the OLTC

by monitoring the voltage values provided by the

reporting units.

Historically, there has not been a substantial issue

with maintaining voltage levels across the network;

transformer settings were determined during substation

installation and rarely changed. However, with the

increasing adoption of consumer micro-generation,

typically in the form of photovoltaic cells, energy flow

is now exhibited both towards and away from the

substation. Additionally, increasing use of low carbon

technologies, including electric vehicles and heat

pumps, are increasing the demand on the network. The

effect is a more dynamically changing voltage on the

network, which increases the risk of the voltage in parts

of the network going outside of the statutory limits. As

the penetration of low carbon technologies increases

over the coming decade, the need for more sophisticated

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

66

voltage management solutions will become ever more

prevalent.

The algorithm considered in the case study is

structured as described in Figure 2, where the busbar

variable represents the voltage on the low-voltage side

of the transformer. The intention is that the algorithm

periodically reads the inputs, using reports which are

sent by the reporting units monitoring different points

of the network, and then every k time steps executes a

number of rules that calculates the new target voltage

for the OLTC.

Figure 2: Algorithm Pseudo-Code

The properties of the system that need to be

checked – which are specified in the models as Event-B

invariants – are derived from the stakeholder

requirement on the system to keep the voltage within

required bounds at all points on the network. The

challenge is in verifying the behaviour of the algorithm

against these invariants, taking into account realistic

power throughput as well as the effect of late or missing

reports from the reporting units, and electrical faults on

the network.

It is clear that scenarios such as this are archetypal

of modern cyber-physical systems; where there are

numerous computing systems all cooperating over

potentially unreliable communications channels to

achieve a common goal. Further, the unreliable nature

of the communications mechanism means that it is

challenging for formal methods alone to verify this

system – typically a formal approach would assume that

the communications mechanisms are reliable. In fact,

this is where simulation plays a critical role to further

assist in verifying the system.

In the following sections, it is considered what the

discrete and continuous models in this scenario are, and

how they are first verified formally and then simulated

together to verify the system as a whole. But first,

related works are considered.

3. RELATED WORK

It is well known that formal methods have been

successfully applied to large industrial software

systems, a recent survey of these has been compiled by

Jim Woodcock (Woodcock et al. 2009). In an attempt to

allow for formal methods to be applied to systems that

are dependent on the physical wold (i.e. cyber-physical

systems), formal hybrid methods were developed

(Henzinger 2000). These are methods that combine

discrete and continuous constructs. However, due to the

complexity of these models and the resulting infinite

nature, their application was mainly limited to academia

with the notable exception of KeYmaera (Platzer and

Quesel 2008).

In parallel, a simulation methodology evolved for

developing systems that are tightly coupled with the

physical world. Coming out of these simulation based

methods was the need for combining heterogeneous

models and reusing models (potentially between

different tools). The solution to these needs became

known as co-simulation. Ptolemy was one of the first

tools to use co-simulated heterogeneous models,

connected in an arbitrarily hierarchical fashion (Buck

1994; Chang, Kalavade, and Lee 1996). In recent years,

two non-proprietary standards for co-simulation have

emerged: FMI and DESTECS (Blochwitz et al. 2011;

Pierce et al. 2012). These standards necessitate that the

model to be simulated contains all the solvers that it

requires, so it can be treated as a black box, and thus is

portable between tools.

It was inevitable that co-simulation would be used

as a mechanism to combine formal discrete models and

continuous models (Živojnovic and Heinrich 1996;

Fitzgerald et al. 2010). One directly relevant integration

of these two approaches was by George Hackenberg,

where formal modelling techniques were applied to the

smart grid domain (Hackenberg et al. 2012). A bespoke

environment based on the FOCUS approach (Broy and

Stølen 2001) was used. This allowed for the creation of

discrete models representing the control systems of the

appliances in a number of houses. Models of the low

and medium voltage power distribution network were

also created, and simulated with the discrete models.

The fundamental approach is similar to that applied in

this work, however, it demonstrated a proof of concept

and did not apply the tool to an industrial problem. In

contrast, this work is assisting in the development of an

industrial system.

Vitaly Savicks and Jens Bendisposto developed the

plugin to the Rodin toolset that has allowed for the co-

simulation of Event-B and Modelica models described

in this paper (Savicks et al. 2013).

4. MODELLING

Elements of the system were modelled using both the

Event-B and Modelica modelling languages. Event-B

was used to model the algorithm, the reporting units,

and an abstract communication network between these

components. This created an encompassing discrete

model of the cyber portion of the system. The physical

models were modelled using Modelica, and consist of

the low-voltage power network – including domestic

customer demand models and inputs from photovoltaic

sources – and the OLTC, complemented with a

stochastic model specifying the occurrence of

communication outages. The interaction between these

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

67

models is depicted in Figure 3, which also forms the

basis of the simulation setup described in Section 5.

Figure 3: Modelling Strategy

From Figure 3, it can be observed that the discrete

Event-B models represent the elements to be tested,

whereas the continuous models represent the

environment against which the system must be verified.

4.1. Event-B Models

Different strategies were required for modelling the

Event-B models, each of which are detailed in this

section.

4.1.1. Control Algorithm

The control algorithm was modelled using a state

machine plugin for the Rodin framework, which

allowed for a UML-style hierarchical approach to

modelling the algorithm (Snook and Butler 2006). First,

the high level state was considered, in which the

algorithm can enter or leave a ‘safe’ mode. This safe

mode is entered if the information the algorithm has

about the network is not sufficiently up-to-date to make

a decision; for instance, in the case that communication

from a large number of reporting units is lost. A

simplified example of a state machine representing this

top-level view, generated in Rodin, is shown in

Figure 4.

Figure 4: Event-B State Machine

These state machines can be translated to Event-B

within Rodin, and further detail added to the transitions

and states. A subset of the Event-B code corresponding

to the state machine in Figure 4 is represented below in

Figure 5.

Figure 5: Event-B code

The transitions in Figure 4 are translated into

events, each of which has a number of guards and

actions. The actions update the variables in the model,

and the guards dictate when the events can occur. For

example, the guard @grd1 in the event

SetTargetVoltage in Figure 5 ensures that the target

voltage can only be changed when the algorithm is in

normal mode. The action @act1 in the same event

assigns a new value to the variable that represents the

target voltage.

Invariants are specified in each Event-B model,

which represent the conditions, or requirements, that the

model is expected to uphold. Proof obligations are

generated to unambiguously determine whether each

event maintains the invariants. For example, the

invariant @inv1 in Figure 5 represents the requirement

that the algorithm has to enter the safe mode if the

number of failed communication links exceeds a

particular threshold. In order to prove that the event

ContinueNormalOperation maintains this invariant, a

guard has to be added to the event – @grd2 – which

only allows the model to exit the safe mode if the

communication falls back below this threshold.

Further detail to the algorithm model was added

through a number of additional modelling levels

(refinements). This approach of defining a chain of

models, each adding more detail, is archetypal of

modelling in Event-B. It allows for the key elements of

the system to be captured, whilst omitting any details

which are not relevant to the properties being tested. An

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

68

example of a refinement of the

ContinueNormalOperation event in Figure 5 is shown

in Figure 6. Additional events, guards, actions, variables

and invariants can be added at each refinement step.

Figure 6: Refined Event

Further guards and actions have been added to the

event in Figure 6 as part of the refinement. In addition,

guard @grd2 of the abstract event in Figure 5 has been

replaced by the more concrete guards @grd3 and

@grd4, which represent the communication status of

the mid and end points of the network separately.

Further proof obligations are generated in the model in

order to determine the consistency between the

refinement levels. These proof obligations (once

discharged) ensure that it is not possible to violate the

invariants of more abstract levels of the model. This

allows for the models to be produced in an iterative

fashion alongside design or requirements generation;

additional features or requirements can be added to the

model as a refinement, and insurance can be generated

that they are consistent with the requirements already in

place.

4.1.2. Communications Network

The communications network was modelled directly in

the Event-B language. Different network topologies

were considered for comparison and evaluation,

including a centralised and mesh network. Modelling

the communications network followed a similar top-

down approach, in which the first model is a generic

communications model of abstract send and receive

events, to which details of the particular network

topology were added in subsequent refinements.

Moreover, adding details into subsequent models in this

manner has allowed for model reuse. Different

communication networks – which use different

protocols – can be (and have been) branched off the

main development.

4.1.3. Reporting Units

The reporting units used a slightly different strategy,

namely, decomposition. This followed an approach

where the wider system (including data centres) was

first abstractly formalised, then decomposed into sub-

systems. Only one of these sub-systems was further

developed into a model of the reporting unit. This

approach of first defining the system, and then

extracting the portion of the system that is to be realised

ensured that the reporting units fulfilled the

requirements of the wider system. The decomposition is

facilitated by a Rodin plugin, developed during the

ADVANCE project.

4.1.4. Formal Proof

As mentioned in the previous sections, formal proof

was used to verify the correctness of the Event-B

models. This not only ensured that properties internal to

each element (algorithm, reporting units and

communication network) were preserved correctly, but

also highlighted several issues with the system – some

of which were previously unknown – as a result. These

issues were highlighted due to the inability to discharge

the relevant proofs.

4.2. Modelica Models

The three Modelica models – the low voltage network,

OLTC and specification of communication outages –

were developed using different techniques: equations,

state machines, and stochastic specification.

The low voltage network model encapsulates the

topology of the power network – i.e. 11kV power

source, transformer, feeders, houses and voltmeters –

along with the standard electrical equations of power

networks. A block representation of the top level model

of the low voltage network is depicted in Figure 7. In

addition to Figure 7, the models also contain data that

represents consumption and production of power for

each consumer. This data is generated by incorporating

the probabilistic outputs of the CREST project into the

model (Richardson 2011). The CREST models are very

detailed and consider the number of occupants, when

and which domestic appliances are used, when lights

are used, and PV contributions.

Figure 7: Low Voltage Top Level Model

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

69

The OLTC model (represented by the TapCon

block in Figure 7 and elaborated in Figure 8) monitors

the voltage at the transformer and changes the tap

position when the voltage deviates from the target by

more than a specified amount, mimicking the automated

behaviour of the actual OLTC. Although the OLTC

contains both discrete and continuous behaviour, it was

modelled in Modelica as it is an off-the-shelf device

representing part of the environment for the Event-B

models. The OLTC was modelled using the Modelica

state machine library, and is depicted in Figure 8, where

the boxes represent states and the black bars represent

transitions.

Figure 8: OLTC State Machine

The communication outage model is a stochastic

model in Modelica. Based on industrial statistics it

determines at what time, and for how long, a given

communication link fails. The implementation of the

stochastic models within Modelica is canonical, and

represented by a sequence of probabilities (and

associated actions) that partition the interval , then

at discrete time steps, using the Peter Fritzson pseudo

random number generator, generate a number in
and select the corresponding action from the sequence.

In this case the action determines how long a

communication link fails for.

Using industrial stochastic based simulation of the

communication link failures provides a fast and

efficient means to analyse the system for robustness

under realistic operating conditions.

5. SIMULATION

Within the ADVANCE framework there are two types

of simulation. The first, simulates the discrete models

using the ProB model-checker. The second, simulates

the discrete and continuous models together and is

known as co-simulation.

5.1. Discrete Model Animation

To aid in verification of the discrete Event-B models,

the model-checker tool ProB is used (Leuschel and

Butler 2003). This allows for the models to be executed

within the Rodin environment to explore their

behaviour. This provides instant feedback to the model

developers as to whether the models have the intended

semantics. It is possible to use the model-checker to

analyse the models and determine whether they

deadlock or violate requirements. In either case, when

one of these scenarios is identified the model-checker

outputs an execution trace from the initial state of the

model to the state that violates the condition. This

allows for the model developer to quickly identify cases

where the model does not behave as intended, fix the

problems, and reanalyse. An example of this is shown

in Figure 9 below. A violated condition (invariant) has

been found and is highlighted in bold. The trace of

events that lead to this violation is displayed in the

History tab. The state of the variables in the model can

also be examined at each step of the trace.

Figure 9: ProB Simulation

It is also possible to define graphical animations

that depict the state of the system while it is being

simulated in ProB. For example, in the case of the mesh

communications network mentioned previously, an

animation was developed that showed the nodes, the

status of the communications links, and the volume of

packets transiting each link. This is depicted in the

example in Figure 10, where the boxes are nodes, the

active links are represented by the solid lines, and the

width of these lines represents the volume of data traffic

on the link.

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

70

Figure 10: Mesh Network Animation

However, this type of discrete model simulation

does not explore whether the models behave correctly

when in situ, and the wider question of system

validation is not considered – it is geared towards

verifying that the models fulfil their requirements.

5.2. Co-Simulation

To validate that the system fulfils its intended purpose,

the use of co-simulation is employed. The Event-B

models and Modelica models are simulated in parallel,

such that the outputs of one model become the inputs of

another model. This is achieved through the tools

developed within the ADVANCE project (Savicks

2013), and is fully integrated into the Rodin

environment.

The architecture of the simulation framework is

depicted in Figure 11. It is possible to integrate a

number of Event-B and Modelica models into a single

simulation. The configuration is used to define which

inputs and outputs are linked together, and the size of

the time steps of the models. Thus the simulation engine

manages global temporal aspects of the simulation, it

tells each model when to execute, and in the case of the

Modelica models for how long. See Figure 12 for

pseudo code depicting the functionality of the engine.

The performIO step is responsible for copying values

between input and output ports of the models; this is

called for each model before any model starts

execution, to ensure that the outputs are not overridden

with new values before they are read by the other

models. The current implementation of the engine does

not allow for one model to interrupt the simulation, e.g.

in response to an event. To mitigate this issue, the time

steps of the models must be set sufficiently small

enough to respond to outputs from other models.

Figure 11: Conceptual View of Co-Simulation

Figure 12: Simulation Algorithm Pseudo Code

The configuration of the co-simulation within this

case study is defined in Figure 3, where the arrows

depict the linking of an output port on one model to the

input port on another model. Additionally, timing

configuration data is required. This details how each

model perceives the progress of time with respect to the

global time. For instance, the reporting units have a

much higher clock cycle time than the algorithm cycle

time, and the communication network needs to operate

with smaller intervals to ensure packets are delivered at

a realistic pace. The Modelica models are less

dependent upon time, but still need to know how much

time has passed and the length of the computation step

required. Here, the low voltage network model operates

at the same time intervals as the reporting units, to

ensure that the information detected by the sensors is

current.

The discrete models are simulated using the same

technique as described previously, namely, with the

ProB model-checker. Whereas, the continuous nature of

Modelica models require the use of differential equation

solvers. These solvers are embedded into the models

when the model is compiled into a functional mock-up

unit (FMU). An FMU is a binary representation of a

model, typically produced by a Modelica toolset

(Blochwitz et al. 2011).

Within Rodin, once the models have been

configured, the simulation begins, which results in two

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

71

artefacts: time series for chosen variables and execution

traces of the discrete models.

Within the domain of simulation, time series are

common place, but taking advantage of the underlying

framework of Rodin it is also possible to drill down into

the execution traces of the discrete components. Thus, it

is possible to understand exactly why a model makes a

decision. The inputs to the model are plotted, the

internal state of the model is examinable and the

commands it executed are recorded. This provides a

high-fidelity view of the simulation, which other

toolsets often lack.

5.2.1. Results

The initial simulations pinpointed serious issues with

the discrete model of the algorithm entering and leaving

the designated safe mode at the wrong times. This is

interesting as the models were formally developed; it in

fact underlines the issue that the requirements did not

fully define the safe mode behaviour. This was

identified by noticing that the target was not set

correctly in the simulations, then further investigation

into the execution traces showed that the algorithm was

entering safe mode unnecessarily. After modifying the

conditions for entering safe mode, this issue was fixed.

Subsequent simulations indicated under which

conditions the solution could maintain the voltage

bounds. Under ideal circumstances the algorithm was

able to maintain the voltage; however, when the feeders

were unbalanced the voltage on some feeders could not

be maintained within the UK regulated +10%/-6%

bounds. This is depicted in Figure 13, where the thick

line denotes the lower bound at 216. In this example the

upper bound, at 253, was not breached.

Figure 13: Feeder Violations (V)

Further observations relating to the general

behaviour of the system were also raised. The system is

heavily dependent on the medium voltage input. A

simulated medium voltage variation (from a nominal

6.7 L-N KV or 11 L-L KV) is depicted in Figure 14,

and is seen to be mirrored in the low voltage

transformer output in Figure 15. Figure 15 also shows

the relationship between the target set by the algorithm

(dotted blue line) and the busbar voltage (on the low-

voltage side of the transformer), which is as expected;

notably not every target change corresponds to a tap

change. The correlating changes in tap position for this

example are shown in Figure 16; each discrete

increment changes the busbar L-L (Line-to-Line)

voltage by 8V.

Figure 14: MV Input (KV)

Figure 15: Busbar and Target (L-L Voltage (V))

Figure 16: Tap Position

6. CONCLUSION

In this paper, the low-voltage smart energy case study

of the ADVANCE project has been described and the

initial results presented. The paper also overviewed the

ADVANCE methodologies, with special emphasis on

cyber-physical systems engineering.

The advantages of the ADVANCE framework are

twofold:

 Formal development and verification of

control systems, and

 Validation of the developed system against

plant models.

Further, a single development environment is used for

the formal development and analysis, with the freedom

to integrate with any FMU plant model. In this paper,

all plant models were developed using Modelica.

Changes are made to the formal models if issues

are found through the verification or validation, and

retested against the environment until a satisfactory

solution is found.

This allows for the system to be formally analysed,

simulated and improved at an early phase of the system

life cycle, hence reducing time to market of complex

systems.

ACKNOWLEDGMENTS

We would like to thank members of the ADVANCE

consortium for their continued support throughout this

work, especially the University of Southampton and

Heinrich Heine University Düsseldorf for their

continued support with the modelling and co-

simulation.

We would also like to thank the anonymous

reviewers of this paper for their time and helpful

comments.

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

72

REFERENCES

Abrial, J.-R., 2010. Modeling in Event-B: system and

software engineering. UK:Cambridge University

Press.

Abrial, J.-R., et al., 2010. Rodin: an open toolset for

modelling and reasoning in Event-B. International

Journal on Software Tools for Technology

Transfer. volume 12:447-466.

Blochwitz, T., et al., 2011. The functional mockup

interface for tool independent exchange of

simulation models. Proceedings of 8
th
 Modelica

Conference, pp. 105-114. March 20-22, Dresden,

Germany.

Broy, M. and Stølen, K., 2001. Specification and

development of interactive systems: focus on

streams, interfaces and refinement. USA:Springer-

Verlag New York.

Buck, J., Lee, E. and Messerschmitt, D., 1994. Ptolemy:

A Framework for Simulating and Prototyping

Heterogeneous Systems. Int. Journal of Computer

Simulation, special issue on "Simulation Software

Development" volume 4:155-182.

Chang, W.-T., Kalavade, A. and Lee, E., 1996.

Effective Heterogenous Design and Co-

Simulation. NATO ASI Series: Hardware/Software

Co-Design volume 310:187-212.

Colley, J. and Butler, M., 2014. Advanced Design and

Verification Environment for Cyber-physical

System Engineering. Web. Available from:

http://www.advance-ict.eu/ [May 2014].

Edmunds, A., Colley, J. and Butler, M., 2012. Building

on the DEPLOY legacy: code generation and

simulation. DS-Event-B-2012: Workshop on the

experience of and advances in developing

dependable systems in Event-B.

Fitzgerald, J., Larsen, P., Pierce, K., Verhoef, M. and

Wolff, S., 2010. Collaborative Modelling and Co-

simulation in the Development of Dependable

Embedded Systems. Lecture Notes in Computer

Science. volume 6396:12-26.

Fritzson, P., 2010. Principles of object-oriented

modeling and simulation with Modelica 2.1. John

Wiley & Sons.

Hackenberg, G., Irlbeck, M., Koutsoumpas, V. and

Bytschkow, D., 2012. Applying formal software

engineering techniques to smart grids.

Proceedings of 1
st
 International Workshop on

Software Engineering for the Smart Grid (SE4SG),

pp. 50-56. June, Zurich, Switzerland.

Henzinger, T., 2000. The Theory of Hybrid Automata.

NATO ASI Series: Verification of Digital and

Hybrid Systems volume 170:265-292.

Leuschel, M. and Butler, M., 2003. ProB: A Model

Checker for B. Lecture Notes in Computer

Science. volume 2805:855-874.

Pierce, K., et al., 2012. Collaborative Modelling and

Co-simulation with DESTECS: A Pilot Study.

Proceedings of 21
st
 International Workshop on

Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE), pp. 280-

285. June, Toulouse, France.

Platzer, A. and Quesel, J.-D., 2008. KeYmaera: A

Hybrid Theorem Prover for Hybrid Systems

(System Description). Lecture Notes in Computer

Science: Automated Reasoning volume 5195:171-

178.

Richardson, I., 2011. Integrated high-resolution

modelling of domestic electricity demand and low

voltage electricity distribution networks. PhD

Thesis. Loughborough University.

Savicks, V., Butler, M., Bendisposto, J., and Colley, J.,

2013. Co-simulation of Event-B and Continuous

Models in Rodin. Proceedings of 4
th

 Rodin User

and Developer Workshop. June, Turku, Finland.

Snook, C., Butler, M., 2006. UML-B: Formal modeling

and design aided by UML. ACM Transactions on

Software Engineering and Methodology volume

15 issue 1:92-122.

Woodcock, J., et al., 2009. Formal Methods: Practice

and Experience. ACM Computing Surveys volume

41 issue 4:1-40.

Živojnovic, V. and Heinrich, M., 1996. Compiled

HW/SW co-simulation. Proceedings of the 33
rd

annual Design Automation Conference, pp. 690-

695. June, Las Vegas, USA.

AUTHORS BIOGRAPHY

Brett Bicknell holds a BSc Physics degree and has

played a key role in a number of formal methods

initiatives, including the FP7 ADVANCE project. His

software engineering experience encompasses varying

levels of criticality, including embedded systems and

data solutions.

Karim Kanso has worked within the field of formal

methods and software engineering for many years, on

various projects in the domains of transportation and

aerospace, and received a PhD in theoretical computer

science.

José Reis is a Principal Consultant Engineer at Critical

Software Technologies. He plays a key role in the

development of model-driven engineering and formal

methods within Critical Software Technologies. He has

been leading the team working on the ADVANCE FP7

project and prior to that Mr. Reis was involved with

DEPLOY FP7. In parallel with this Mr. Reis has been

working with various prime contractors, such as BAE

Submarines, EADS Astrium and AgustaWestland, with

a focus on requirements engineering and verification

and validation.

Neil Rampton is a professional electronics engineer

who has worked for 25+ years within Selex ES. Neil

has experience in a wide variety of senior engineering

roles, including within engineering management,

business/solutions development, programme

management and change management. His project

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

73

involvement has included a wide variety of electronics

and systems, including high performance thermal

imaging cameras and Generic Vehicle Architectures for

military vehicles. He is currently responsible for

Capability and Product Strategy for Smart Energy

(Smart Grid and Buildings Energy Management) and is

looking at the development of Smart City &

Transportation solutions.

Daniel McLeod holds a BSc Physics degree and has

worked on a variety of imaging sensor systems in the

Airborne, Land and Naval domains. His previous work

includes algorithm development, system design,

requirements analysis and verification and project

management. He is currently working within the smart

energy domain on a Low Voltage monitoring system

and a system for automated control of low voltage

transformers in response to customer demand and

distributed generation.

Proc. of the Int. Workshop on Simulation for Energy, Sustainable Development & Environment 2014,
978-88-97999-42-3; Bruzzone, Cellier, Janosy, Longo, Zacharewicz Eds.

74

