
AN INTEGRATED TOOLCHAIN FOR MODEL BASED FUNCTIONAL SAFETY
ANALYSIS

Muhammed Zoheb Hossain(a), Olena Rogovchenko (b), Mattias Nyberg(c), Peter Fritzson(d)

(a) Scania, Sweden
(b) Linköping University, Sweden

(c) Scania, Sweden
(c) Linköping University, Sweden

(a)zohebmuhammed.hossain@scania.com, (b)olena.rogovchenko@liu.se, (c)mattias.nyberg@scania.com,

(c)peter.fritzson@liu.se

ABSTRACT

The significant increase in the complexity and
autonomy of the hardware systems renders the
verification of the functional safety of each individual
component as well as of the entire system a complex
task and underlines the need for integrated, model based
tools that would assist this process. In this paper the
authors present such a tool, coupled with an approach to
functional safety analysis, based on the integration of
functional tests into the model itself. The analysis of the
resulting model is done through a stochastic Bayesian
model. This approach strives to both bypass the
necessity for costly hardware testing and integrate the
functional safety analysis into an intuitive component
development process.

Keywords: Bayesian Networks, Safety Analysis,
Model-based Design, Functional testing

1. INTRODUCTION
Functional safety is a key concern in all industry
sectors, be it nuclear plants, medical appliance
manufactures or the automotive industry. The functional
correctness of a component is the guarantee that the
component behaves the way it should and fulfills all the
functional requirements of the system. In order to
ensure functional correctness of a component it is
necessary to perform a series of rigorous tests on the
target device in the appropriate environment context.
Skipping this phase and allowing for a component to be
tested based on its design specification, without an
actual hardware implementation, would make a
significant contribution to reducing the skill, labor, time
and money required to develop the component.
 In this paper we present a novel approach to
Functional Safety verification, where we integrate
functional tests as full-fledged components into a model
based architecture developed using OpenModelica
(Fritzson 2004). This model can then be used to
generate a stochastic Bayesian model which in turn can
be used to produce a Failure Mode Effect and Analysis
(FMEA) table.

2. A COMBINED MODELING APPROACH

2.1. Bayesian Networks
Bayesian Networks (BN) allow for the specification of
risk models that represent the key factors and their
inter- relationships (a qualitative model) with
probability distributions based on expert judgment or
from observed data (a quantitative model). Bayesian
Networks are already used for the verification of
functional validity, but the existing approaches require
the use of dedicated tools which means that there is a
gap to be breached between the tool used to design and
program the component and the verification tool. Our
approach is to combine in a single tool suite the design
and verification stages of the development process.

2.2. Failure mode and effect analysis
Failure modes and effects analysis (FMEA)
(McDermott et al. 2009) is a step-by-step approach to
identifying all the possible failures in a design. With
this approach failures are prioritized according to how
serious their consequences are, how frequently they
occur and how easily they can be detected. FMEA is
applicable right from the conception stages of a
component and throughout its entire life-span. This
approach is particularly popular with the automotive
and aerospace industries. The FMEA table produced by
analyzing the component model can thus be used to
predict possible failures and prevent them right in the
design stages.

2.3. Component Modeling
Nowadays a large choice of design and simulation tools
is available. Tools like Matlab, Simulink or
SimulationX provide efficient support for the
mathematical aspects of component modeling. However
these tools lack the support for intuitive modular design
aspects. OpenModelica, on the other hand, provides a
complete modeling editor (OMEdit) as well a
structured, intuitive approach to modeling and
simulation of complex multi-domain systems in the

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 133

Modelica language. For this reason we chose the free
and open-source OpenModelica platform for our
implementation.

3. USE-CASE SCENARIO
To illustrate our modeling approach we have chosen to
model a Magnetic Valve that is used as a sub-
component to start the ignition of an automotive
vehicle. Figure 1 provides a representation of the
complete model. The rectangular blocks represent the
various components and the squares with a circle in the
center are the services associated either with an
individual component or with the whole environment.

Figure 1: Magnetic Valve Model

The components and the services are all modeled

through classes, in the sense of classical Object-
Oriented programming languages. Services are simply a
special kind of components that formalize what is
required from one component by another in order to
perform the task correctly. These components are
interconnected through their interfaces.

Figure 2: Model with a fault

Based on the diagram in Figure 1, a dependency graph
will be generated, by analyzing the dependencies of the
services provided on the different components of the
model. We then introduce probabilities at the leaf nodes
and perform inference over the Bayesian Network
which allows us to analyze how and where a node is
affected when the node ’PWM Generator’ fails.
 In the first scenario in Figure 2, we analyze the
probability of a component's success and failure, upon
fault injection in leaf nodes. Once the Bayesian
Network is generated it is automatically opened in
Genie, a viewing tool for Bayesian Networks. Here, one
can insert probability values into the nodes of the
network in order to carry out an inferencing over the
network. Thus in Figure 2, we have injected a fault into
the Magnetic Valve node, which lies at the bottom right
of the figure and after inferencing we can see that the
fault is propagated to all the nodes that are dependent on
the Magnetic Valve node.

 In the second scenario in Figure 3 we investigate
the probabilities of the model's success and failure when
no fault is injected. For this purpose, we have kept the
model free of fault and hence we see a clean slate
reflection of our model. The "AVA", "UNA" and "NF"
represents Available, Unavailable and No Fault
respectively.

Figure 3: Model with no faults

Once we have the inference of the Bayesian
Network we generate the FMEA table with the
following information: Failed Component, Failure
Mode, Potential Effect of Failure and Severity of the
Failure. This table helps the designers or engineers to
adapt their design in order to mitigate the possibility of
the failure mode.

4. IMPLEMENTATION
The implementation of the tool presented in this paper
relies on C++ code for the generation of the causal
nodes for the components of the model, which are
written in Modelica by using the graphical editors
provided by the OpenModelica tool suite.

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 134

 Previously the implementation relied on Matlab
code for the generation of Bayesian Networks, but since
one of our goals is to create a free and open source tool-
chain, this code was ported to C++, which required
some minor alterations to the OpenModelica API.

4.1. Model-based design implementation
 First of all, we needed some means to relate the
Services with the corresponding Behavior-components
in terms of the order of message flow in the system. In
OpenModelica it is not possible to assign causality in
hardware components, hence we had to add an optional
dependency parameter in the API through which it
would become possible to get our desired information.
The following example syntax corresponds to the
components of our model:

annotation(
__OpenModelica_ComponentsHierarchy	 =	 	
{{"Pressure	 Controller","Current	 Controller"},	
	 {"Current	 Controller","PWM	 Voltage	 Generator"},	
{"PWM	 Voltage	 Generator",	 "Magnetic	 Valve"},	
{"Magnetic	 Valve","AD	 Converter"},	
{"AD	 Converter","DigitalVoltageToDigitalCurrent	
Converter"},	
{"DigitalVoltageToDigitalCurrent	 Converter","Current	
Controller"}});	

 The component names inside the curly braces are to
be read as, "Pressure Controller is parent to Current
Controller", "Current Controller is parent to PWM
Voltage Generator", and so on.
 Now, the model also contains the service to
behavior relationship, from which we can derive the
overall dependencies for the Service-Behavior relation
of the model. Later on, we use this information to
generate the Bayesian Network of the corresponding
Modelica model.
 In order to make our model in Modelica adaptable
for future extensions we have created base classes for
the Service components. The base classes consist of all
the basic attributes the Service components are required
to have. The basic attributes in this case are the
Behavior_Input interfaces i.e. the input interfaces that
take Success/Failure values from the behavior
components they are connected to. As well as
Service_Input and Service_Output interfaces where the
input interface takes in input from the Service on which
this Service is dependent on, and the output interface
gives out dependency information to the Service it is
parent of.

4.2. Failure verification implementation
 The implementation also relies on the Structural
Modeling, Inference and Learning Engine (SMILE)
library (Druzdzel 1999) for the creation of the Bayesian
Network and the companion tool GeNie for visualizing
the resulting BN. Figure 4 illustrates the relationship
between the various tools.

The joint probability distribution can answer any
questions regarding the domain of some random
variables but can become intractably large as the
number of variables grows. Independence and
conditional relationships among variables can greatly
reduce the number of probabilities that need to be
specified in order to define the probability distribution.

Once the Bayesian network is generated and
visualized in Genie, we can introduce probability values
in the component nodes, i.e. the non-service nodes.
Upon inclusion of the Success/Failure probabilities, we
can perform inference over the BN in order to
troubleshoot the model.

Figure 4: Workflow

Building the network consists of three tasks. The

first of these is to identify the variables of importance
along with their possible states. Once these are
identified the next task is to identify the relationships
between the variables and to express them through a
graphical structure. The third and final task is to obtain
the probabilities for the quantitative part of the network.

The troubleshooting problem in the context of a
model can be expressed as follows: “Given a set of
observations, which component is the most likely to be
faulty?”. A Bayesian Network is well suited for this
kind of reasoning under uncertainty. We have used
FMEA, a top-down approach, to evaluate out model,
assigning failure probability to the top node along with
probabilistic values in the depending lower nodes. The
faulty components are then computed on the condition
that the top component level has failed to perform its
task.

5. RELATED WORKS
The advantages of applying model based design
techniques to the field of reliability and safety analysis
are clear, however so far only a few works in the
domain exist.

 One of these is RAMSAS, a model-based method
for system reliability analysis, which combines the
power of modeling languages such as UML or SysML
with the Mathworks simulation environments. It allows
to analyze the system as a whole by decomposing it into

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 135

subsystems. This method is centered around the
classical iterative engineering process with four steps:
Objectives Definition, System Modeling, System
Simulation and Results Assessment.

 Although united in the goal of applying model
based techniques and combining the advantages of
established modeling tools with more formal analysis
methods, there are some differences in the two
approaches.

 The RAMSAS approach (Garro et al. 2012) relies
on simulation based analysis and verification against
description of the required behavior, whereas in our
work we rely on static analysis and probabilities to run
through possible failure scenarios.

 Another distinction is that in our implementation
we made a voluntary decision to rely on free and open
source software, whereas the RAMSAS implementation
relies on proprietary tools.

6. CONCLUSION AND FUTURE WORKS
Model-based design brings the advantages of a
modular, object-oriented language for system design
such as Modelica to the safety verification process.

 Choosing Bayesian Networks for diagnostics in the
context of functional safety verification on the other
hand has both advantages and drawbacks.

 A clear advantage is the direct correspondence of
the network nodes to the real world components of the
ECU, this makes the model more reliable and easier to
modify.

 The use of expert knowledge should not be
underestimated since the probabilities are outcomes of
expert knowledge, however it may become counter-
effective when several experts are involved and a large
amount of probabilities has to be elected.

 In our current implementation we output only the
basic information that is needed to make the FMEA
worth using. In our future work we would like to add
more specific fields like "Severity Rating", "Occurrence
Rating" and "Detection Rating" and eventually these
three parameters will lead us in calculating the Risk
Priority Number (RPN).

 The next big step is to implement fault-tolerant
control and diagnosis through a service oriented
architecture in a more complex and realistic systems,
and use the results as a basis for comparison with other
academic and/or commercially available tools such as
Hip-Hops (Papadopoulos et al. 2001) to provide an
evaluation of the model.

 Another work in progress is the generation of a
Fault Tree Analysis (FTA) (Clifron 1999), a top-down,
deductive failure analysis in which an undesired state of
the system is analyzed using Boolean Logic to combine
a series of low-level events. This approach will
complement the current bottom-up analysis scheme.

 The current case studies are based on the
automotive industry standards, and international
standards such as IEC61508 and ISO26262 require both
FTA (fault tree analysis) and FMEA to be done. The
proposed approach will be of great help since it will
allow to perform them automatically or at least semi-
automatically.

In a general manner, this work is part of an
ongoing project with a larger context for developing a
model-based approach for system-requirement
verification and fault tolerance.

ACKNOWLEDGMENTS
This work has been supported by the Swedish Strategic
Research Foundation in the EDOp and HIPo projects
and Vinnova in the RTSIM and ITEA2 OPENPROD
projects. The Open Source Modelica Consortium
supports the OpenModelica work.

REFERENCES
 Clifron, E. (1999). Fault tree analysis - a history. In
Proceedings of the 17th Inernational Systems Safety
Conference.
 Druzdzel, M.J. (1999). Smile: Structural modeling,
inference, and learning engine and genie: a development
environment for graphical decision-theoretic models. In
Proceedings of the sixteenth national conference on
Artificial intelligence and the eleventh Innovative
applications of artificial intelligence conference
innovative applications of artificial intelligence, AAAI
’99/IAAI ’99, 902–903. American Association for
Artificial Intelligence, Menlo Park, CA, USA.

Fritzson, P. (2004). Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1. Wiley-
IEEE Press, 1., auflage edition.

A. Garro and A. Tundis, March 2012, A Model-
Based method for System Reliability Analysis, Proc. of
the Symposium On Theory of Modeling and Simulation
(TMS), Orlando, FL (USA)

McDermott, R., Mikulak, R., and Beauregard, M.
(2009). The basics of FMEA. CRC Press.

Papadopoulos, Y., McDermid, J., Sasse, R., and
Heiner, G. (2001). Analysis and synthesis of the
behaviour of complex programmable electronic systems
in conditions of failure. Reliability Engineering System
Safety, 71(3), 229–247.

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 136

