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ABSTRACT 

A model of feeding adaptation of a filter feeder is 

presented. Based on the assumption that filtration 

adaptability represents optimization type process is 

incorporated. Two possible strategies were followed: an 

instantaneous optimality at each time interval and an 

integral formulation, maximization of the integral 

biomass which leads to the optimal control problem 

with control and state constraints. The optimal control 

problem is transcribed into nonlinear programming 

problem, which is implemented with adaptive critic feed 

forward neural network and recurrent neural network 

for solving nonlinear projection equations. Also 

stability analysis of equilibria and some numerical 

simulation is given. It is shown that Hopf bifurcation 

may occur depending on filtration rate. 

 

Keywords: optimal control problem, adaptive critic 

neural network, feeding adaptation, Daphnia 

 

1. INTRODUCTION 

Optimal control of nonlinear systems is one of the most 

active subjects in control theory. There is rarely an 

analytical solution although several numerical 

computation approaches have been proposed (for 

example, see (Kirk, 1989) and (Polak, 1997). The most 

of the literature dealing with numerical methods for the 

solution of general optimal control problems focuses on 

algorithms 

for solving discretized problems. The basic idea of these 

methods is to apply nonlinear programming techniques 

to the resulting finite dimensional optimization problem 

(Buskens and Maurer, 2000). When Euler integration 

methods are used, the recursive structure of the 

resulting discrete time dynamic can be exploited in 

computing first-order necessary condition.  

In the recent years the neural networks are used for 

obtaining numerical solutions to optimal control 

problem (Padhi, Unnikrishnan, Wang and Balakrishnan, 

2001), (Padhi,  Balakrishnan and Randoltph, 2006). For 

the network, a feed forward network with one hidden 

layer, a steepest descent error back propagation rule, a 

hyperbolic tangent sigmoid transfer function and 

a linear transfer function were used.  

The paper presented extends adaptive critic neural 

network architecture proposed by (Padhi, Unnikrishnan, 

Wang and Balakrishnan, 2001) to the optimal control 

problems with control and state constraints. The 

organization of the paper is as follows. In Section 2 

optimal control problems with control and state 

constraints are being introduced. We summarize 

necessary optimality conditions and give a short 

overview on basic result including iterative numerical 

methods and discussed discretization methods for given 

optimal control problem and a form of resulting 

nonlinear programming problems. Section 3 presented 

a short description of adaptive critic neural network 

synthesis for optimal problem with state and control 

constraints. Section 4 consists of the model of feeding 

adaptation. In Section 5 and 6 we apply the methods to 

the model presented in section 4 to compare short-term 

and long-term strategy of feeding adaptation of filter 

feeders. Section 7 consists of stability analysis of 

equilibria. Conclusions are being presented in Section 8. 

 

2. OPTIMAL CONTROL PROBLEM 

We consider nonlinear control problem subject to 

control and state constraints. Let x(t) ∈ R
n
 denote the 

state of a system and u(t) ∈ R
m
 the control in a given 

time interval [t0, tf ].   

Optimal control problem is to minimize 

  

 (   )   ( (  ))  ∫   ( ( )  ( ))            ( )
  

  

 

 

subject to  

 

 ̇( )    ( ( )  ( ))  
 

 (  )       
 

 ( (  ))      

 

 ( ( )  ( ))        ∈ [     ]  

 

The functions              
      

                     and             
    are assumed to be sufficiently smooth on 
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appropriate open sets. The theory of necessary 

conditions for optimal control problem of form (1) is 

well developed (Kirk, 1989), (Pontryagin, Boltyanskij, 

Gamkrelidze and Mischenko,1983). 

We introduce an additional state variable 

 

  ( )    ∫   ( ( )  ( ))  
 

 

 

 

defined by the  

 

  ̇( )     ( ( )  ( ))   ( )     
 

Then the augmented Hamiltonian function for problem 

(1) is 

 

 (       )   ∑     (   )  ∑     (   ) 

 

   

 

   

         ( ) 

 

where  ∈      is the adjoint variable and  ∈    

is a multiplier associated to the inequality constraints. 

Let ( ̂  ̂) be an optimal solution for (1) then the 

necessary condition for (1) (Kirk, 1989),  (Pontryagin, 

Boltyanskij, Gamkrelidze and Mischenko,1983) implies 

that there exist a piecewise continuous and piecewise 

continuously differentiable adjoint function   [     ]  

    ( )    and a multiplier  ∈    satisfying 

 

  ̇( )    
  

   

( ̂( )  ( )  ( )  ̂( )) 

 

  (  )      
( ̂(  ))       

( ̂(  ))           ( ) 

 

  ̇( )     

 

   
  

  
( ̂( )  ( )  ( )  ̂( ))  

 

For free terminal time tf , an additional condition needs 

to be satisfied: 

 

 (  )  (∑    (   )  ∑    (   ))

 

   

 

   

 
  

    

 

Furthermore, the complementary conditions hold 

i.e. in  ∈ [     ]      (   )    and    (   )  

    Herein, the subscript x or u denotes the partial 

derivative with respect to x or u. 

 

2.1. Discretization of optimal control problem 

Direct optimization methods for solving the optimal 

control problem are based on a suitable discretization of 

(1). Choose a natural number N and let   ∈ [     ]   

       , be an equidistant mesh point with    
              , where h is time step and    

     . Let the vectors   ∈        ∈      

     , be approximation of state variable and control 

variable x(ti), u(ti), respectively at the mesh point. 

Euler´s approximation applied to the differential 

equations yields 

 

           (     )            
 

Choosing the optimal variable 

   (                      ) ∈        
(     ) , the optimal control problem is replaced 

by the following discretized control problem in the form 

of nonlinear programming problem with inequality 

constraints: 

     ( )    (  )  
 

where 

 

 (  )   ((       )    )    
                              ( ) 

 

subject to   

 

           (     )     
 

    (  )  
 

 (  )      
 

 (     )                  
 

In a discrete-time formulation we want to find an 

admissible control which minimizes object function (4). 

Let us introduce the Lagrangian function for the 

nonlinear optimization problem (4): 

 

 (         )  ∑     (     

   

   

     (     ))   

  (     )  ∑    (     )    (     ) 

   

   

            ( ) 

 

and define H(i) and  as a follows: 

 

 ( )   (   )(     (     )  
        
 

The first order optimality conditions of Karush-

Kuhn-Tucker (Polak, 1997) for the problem (4) are: 

 

     (       )

              (     )     

      (     )               ( ) 

 

     (       )

    (  )      (     )    ( ) 

 

     (       )          (     )      (     )    

                                                                            ( ) 
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    (       )     ∑   ( )

   

   

 ∑     (     )

   

   

                             ( ) 

 

Eq. (6-9) represents the discrete version of 

necessary condition (3) for optimal control problem (1). 

 

3. ADAPTIVE CRITIC NEURAL NETWORK 

FOR OPTIMAL CONTROL PROBLEM 

WITH CONTROL AND STATE 

CONSTRAINTS AND FREE TERMINAL 

CONDITION 

It is well known that a neural network can be used to 

approximate smooth time-invariant functions and 

uniformly time-varying function (Hornik, Stichcombe 

and White, 1989). Neurons are grouped into distinct 

layers and interconnected according to a given 

architecture (Figure 1). Each connection between two 

neurons has a weight coefficient attached to it. The 

standard network structure for an approximation 

function is the multiple-layer perceptron (or feed 

forward network). The feed forward network often has 

one or more hidden layers of sigmoid neurons followed 

by an output layer of linear neurons. 

Figure 1 shows a feed forward neural network 

with ni inputs nodes one layer of   nhl hidden units and 

no output units. Let                   
  and     

             
  be the input and output vectors of the 

network, respectively. Let   [         
] be the 

matrix of synaptic weights between the input nodes and 

the hidden units, where                   
  and     is 

the bias of the jth hidden unit.  

 

 

Figure 1: Feed Forward Neural Network Topology With 

One Hidden Layer, vji; wkj Are Values of Connection 

Weights, vj0; wk0 Are Values of Bias 

 

 Let also   [        
] be the matrix of synaptic 

weights between the hidden and output units, where 

                  
   and     is the bias of the 

kth output unit,     is the weight that connects the jth 

hidden units to the kth output unit. 

The response of the jth hidden unit is given by 

 

        (∑       ) 

  

   

 

 

where     ( )is the activation function for the hidden 

units. The response of the kth output unit is given by 

 

     ∑       

   

   

 

 

Multiple layers of neurons with nonlinear transfer 

functions allow the network to learn nonlinear and 

linear relationships between input and output vectors. 

The number of neurons in the input and output layers is 

given, respectively, by the number of input and output 

variables in the process under investigation. 

 

 
Figure 2: Architecture of Adaptive Critic Network 

Synthesis 

 

 The multi-layered feed forward network shown in 

Figure 2 is training using the steepest descent error 

backpropagation rule. Basically, it is a gradient descent, 

parallel distributed optimization technique to minimise 

the error between the network and the target output 

(Rumelhart, Hinton and  Wiliams, 1987). 

 In the Pontryagin’s maximum principle for deriving 

an optimal control law, the interdependence of the state, 

costate and control dynamics is made clear. Indeed, the 

optimal control  ̂ and multiplier  ̂ is given by Eq. (8), 

while the costate Eqs. (6-7) evolves backward in time 

and depends on the state and control. The adaptive 

critic neural network is based on this relationship. It 

consists of two networks at each node: an action 

network the inputs of which are the current states and 

outputs are the corresponding control  ̂ and multiplier 

 ̂, and the critic network for which the current states are 
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inputs and current costates are outputs for normalizing 

the inputs and targets (zero mean and standard 

deviations). For detail explanation see (Rumelhart, 

Hinton and  Wiliams, 1987). 

 From free terminal condition (ψ(x) ≡ 0) and from 

Eqs. (6-7) we obtain that   
     for  i =N, . . . , 0 and 

  
     for  j = 1, . . . , n. We use this observation 

before proceeding to the actual training of the adaptive 

critic neural network. The steps for training the action 

network are as follows: 

1)     Generate set S. For all x
k
  S, 

   follow the steps below: 

(1.i)  Input x
k
 to the action network to obtain 

    u
k;a

 and k;a
. 

(1.ii) Using x
k
 and u

k;a
 solve state 

    equation (4) to get x
k+1

. 

(1.iii) Input x
k+1

 to the critic network 

    to obtain k+1
. 

(1.iv) Using x
k
 and k+1

 solve (8) 

    to calculate u
k;t

 and k;t
. 

 

When 

‖(         )  (         )‖   ‖(         )‖       

the convergence criterion for the action network 

training is met.  

 The training procedure for the critic network which 

expresses the relation between xk and λk is as follows: 

1)     Generate set S. For all x
k
  S, 

   follow the steps below: 

(1.i)  Input x
k
 to the action network to obtain 

    u
k;a

 and k;a
. 

(1.ii) Using x
k
 and u

k;a
 solve state 

    equation (4) to get x
k+1

. 

(1.iii) Input x
k+1

 to the critic network 

    to obtain k+1
. 

(1.iv) Using x
k
 , u

k,a
, k,a

 and k+1
 solve (6) 

    to calculate k,t 
. 

(1.v)   Input x
k
 to the critic network 

    to obtain k,c
. 

 

When 

 

‖         )‖   ‖    ‖       
 

the convergence criterion for the action network 

training is met.  

Further discussion and detail explanation of this 

adaptive critic method can be found in [6], (Padhi, 

Unnikrishnan, Wang and Balakrishnan, 2001), (Padhi,  

Balakrishnan and Randoltph, 2006), (Werbos, 1992), 

(Kmet, 2011). 

 

4. MODEL OF FEEDING ADAPTATION 

The model consists of phosphorus (x1) as a limiting 

nutrient for growth of four species of algae of different 

size (x2 − x5) and zooplankton (x6). Similar models of n 

species of microorganisms competing exploitatively for 

one, two or more growth-limiting nutrients are used to 

study continuous culture of microorganisms in 

chemostat under constant condition (Smith, and 

Waltman, 1995) without of any predators. Functions 

occurring in the model are given in Table 2 in 

ecological and mathematical notation, respectively. The 

model is described by the following system of ordinary 

differential equation (9): 

 ̇    (     )  ∑(
        

     

        

 

   

 

       (  
  

     

))                                                   (  ) 

 ̇  
        

     

                            

for i = 2, ..., 5, 

 ̇    (  ∑
    

     

   )    

 

   

 

 

   

Table 1: Values of Parameters 

a1 0.05 sedimentation rate [day
-1

] 

a2 0.6 maximum efficiency of 

zooplankton assimilation 

a3 0.05 recalculation from units of algae 

to units of zooplankton 

a4 60 half saturation constant for 

zooplankton feeding  [mg.m
3
CHA] 

a5 0.03 zooplankton mortality[d
-1

] 

a6 0.002 inflow of zooplankton  

[m
-3 

C.day
-1

] 

a7 0.1 hydraulic loading[d
-1

] 

a8 200 inflow phosphorus 

concentration[mg:m
-3

P] 

a9 0.9 zooplankton filtration rate  

[m
-3

C.day
-1

] 

a10 120 half saturation constant for light 

[cal. cm
-2

.day
-1

] 

a11 – a14  0. inflow of phytoplankton 

concentration [mg.m
-3

CHA] 

 

For detail explanations see (Kmet and Straskraba, 

2004), (Kmet and Kmetova, 2011). It is derived from 

the models of the series AQUAMOD (Straskraba, and 

Gnauck, 1985) modified by the inclusion of several 

“species” of algae. The description of the light 

dependence of algae is highly simplified. Instead of an 

approximative integration of the algal growth over 

depth and time distribution of light intensity only a 

simple function g(I) is used, describing Michaelis-

Menten type dependence with the half saturation 

constant for light IKM. We consider this 

oversimplification appropriate for the purposes of this 

paper.  

Four species of algae were considered during the 

computations performed: x2, ..., x5. Each “species” is 
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represented by a particular algal cell (or colony) 

volume. The volumes were set arbitrarily to (Vi = 50, 

500, 2500 and 5000 μm
3
), to approximate the set of 

“edible” algal sizes commonly occurring in our 

reservoirs. The ecological parameters of the algae are 

considered functions of Vi (Straskraba, and Gnauck, 

1985). Table 1 gives the corresponding values used in 

the present simulations. 

  

Table 2: Size-specific Parameters of Algae 

 Vi algal cell 

volume[m
3
)] 

 

    √
   

  

 
 

 

diameter corr. to Vi 

   ( )   

    (    (    )
 ) 

selectivity 

Ci    (  )      ( ) forcing function 

pi     (  )   

                

spec. growth rate[d
-1

] 

ri     (  )   

                

spec. resp. rate of 

algae [d
-1

] 

si   (  )   

           

half sat. constant for 

P [mg.m
-3

P] 

fi      

           ( )   

         (  ) 

sedimentation func. 

f2          

      (     ) 

water 

temperature[
o
C] 

f3     

           (     ) 

light intensity 

[cal.cm
-2

.day
-1

] 

  (    )             
 (  )  

  
      

 

        

         

         

         

 

However, for other values of Vi it is possible to derive 

the parameters from the functions Pmax(Vi), KS(Vi) and 

Resp(Vi) given in Table 3. It is to be noted that Pmax 

corresponds to light saturation and temperature of 0
◦
C; 

for 20
◦
C the growth rate will be about 7.2 times higher. 

The high values of PRFOS are used to simulate 

eutrophic conditions. For the filtration capability of 

zooplankton we assume that algal volumes selected at a 

given setting of the filtratory apparatus have log-normal 

distribution. This is identical with the “size limited 

predators” and the function we propose is 

approximately identical with the “selectivity” by this 

class of predators as given by (Zaret, 1980). 

Table 3: Parameters for Four “Species” of Algea 

Vi 50 500 2500 5000 

ui 4.57 9.85 16.84 21.22 

pi 0.4151 0.3651 0.3301 0.3151 

si 11.99 21.99 28.98 31.99 

ri 0.023 0.025 0.027 0.028 

 

The description of selectivity Ei is as follows: 

  ( )     (    (    )
 ) 

where u is the value of setal density directly related to 

the algal diameter for which selectivity is maximal and 

ui is the diameter corresponding to each algal cell 

volume Vi. The specific filtration rate of algae of 

different sizes (volumes) of the population adapted to 

certain condition (i.e., with certain values of u becomes 

 

Frz(Vi) = FRZ ∗ Ei(u), 

 

where FRZ is the filtration rate for algae of the optimal 

size, i. e., those which are filtered with the selectivity 

factors Ei(ui) = 1. 

 

5. OPTIMIZATION 

1) instantaneous maximal biomass production as a goal 

function (local optimality), i.e., 

 

 ̇    (     )      

 

for all t, under the constraints 

 

 ∈              
 

2) integral maximal biomass (global optimality), i.e., 

 

 ( )  ∫   ( )   
 

 

 

 

under the constraints 

 

 ∈              
 

 

5.1. Local Optimality 

In the case of strategy 1, we maximize the following 

function 

 

 ( )  ∑
  ( )      

(     )

 

   

 

 

under the constraints 

 

 ∈              
 

 

5.2. Global Optimality 

In case of strategy 2, we have the following optimal 

control problem: to find a function 

 

 ( ̂)  ∫   ( )  
 

 

 

 

attains its maximum, where T denotes the lifetime of an 

individual Daphnia. We introduce an additional state 

variable 
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  ( )  ∫   ( )                                                           (  )
 

 

 

 

defined by the 

 

 ̇ ( )    ( )   ( )     
 

We are led to the following optimal control 

problems:  

 

           (  )                                                           (  ) 

 

under the constraints 

 

  (   )             
  (   )             

 

Discretization of Eqs. (10 - 12) using Eqs. (6- 8) and 

state equation (4) leads to 

 

            
  

 

subject to  

 

          (     )            
 

                (     )       (     )  

           
 

  
                

 

   (              )  
 

          (     )       (     )  
 

where the vector function  

 

 (   )  (      (   )     (   )) 

 

is given by Eq. (11) and by right-hand side of Eq. (10). 

 

6. NUMERICAL RESULTS 

In the adaptive critic synthesis, the critic and action 

network were selected such that they consist of six and 

two subnetworks, respectively, each having 6-18-1 

structure (i.e. six neurons in the input layer, eighteen 

neurons in the hidden layer and one neuron in the 

output layer). The proposed adaptive critic neural 

network is able to meet the convergence tolerance 

values that we choose, which led to satisfactory 

simulation results. Simulations, using MATLAB show 

that proposed neural network is able to solve nonlinear 

optimal control problem with state and control 

constraints. Our results are quite similar to those 

obtained in (Kmet and Straskraba, 2004). 

The results of numerical solutions (Figs. 3 - 5) 

have shown that the optimal strategies  ̃( ) and  ̂( ) 

based on short or long-term perspective, respectively, 

have different time trajectory for different values of Faz 

- sedimentation function, Temp - water temperature, and 

I0 - light intensity (t = 120, 210). 

 

Table 4: Results of Goal Function Evaluations for Local 

and Global Optimality 

Value of goal 

function 

t=120 t=210 

       ( ̃) 

        ( ̂) 

18.4 (Fig. 5) 

27.9 (Fig. 5) 

105.1 

178.4 

 

When  ̂( ) is optimal (what is valid according to 

numerical results) then   ( ̂( ))   ( ̃( )), i.e., the total 

biomass for the short-term perspective is smaller or 

maximally equal to the biomass for the long-term 

perspective. The numerical results have shown, that for 

the initial conditions considered  ( ̂( ))   ( ̃( )), 

(see Table 4). The higher biomass of zooplankton 

obtained in the case of integral formulation points 

towards the assumption that the organisms do better if 

not reacting only to the immediate changes, but having 

developed mechanisms consistent with more long-term 

consideration. 

 

 

Figure 3: Simulation Results - Local Optimality and 

Global Optimality (  
         

        
  

      
        

        
           ) 

 

7. STABILITY ANALYSIS OF EQUILIBRIA 

In this section we investigate the effects of an 

increasing filter density u under constant environmental 

condition. One parameter analysis of existence and 

stability of equilibria of (1) is carried out using filter 

density u as a bifurcation parameter. We consider 

equilibrium solutions to exist only if they lie in the 

nonnegative cone. Derivatives  ̇  for i = 2,...,5 can be 

written in the following way  

 

 ̇        (   )  
 

Suppose that x6 = 0 and ai+9  = 0, i = 2, 3, 4, 5. Then we 

have the following 4 equilibrium points: 

 ̂   ( ̂    ̂     ̂   )  where 
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 ̂   
  (       )

            

  

 ̂  
  (      )

      

     
     

 

for  i = 2, ..., 5, 

 

 ̂    for  j = 2, ..., 5, j  i. 

 

Jacobian matrix at equilibrium point  ̂   has 

negative eigenvalues, i.e., it is locally asymptotically 

stable. The other  ̂  , i = 3,4,5 have at least one positive 

eigenvalue, and they are unstable. Suppose now that xi = 

0 and ai+9 = 0, i = 2, 3, 4, 5. Then we have the following 

equilibrium point  

 ̂  (           
  

  

)  

 

 
Figure 4: Simulation Results - Local Optimality and 

Global Optimality (  
         

        
  

      
        

        
           ) 

 

 

 
Figure 5: Simulation Results - Local Optimality and 

Global Optimality    (  
         

        
  

      
        

        
           ) 

 

The eigenvalues of Jacobian matrix J at   ̂  are: 

 

        
 

   
      

     
      

  

  
       for i = 2,3,4,5, 

 

        
 

It follows from the simple calculation that if  

 

    
        

  

  
  

             
  

  
  

    

 

then equilibrium point   ̂  is unstable. By similar way 

as in [3] we can show that if                  
  

  
      then 

 

   
   

  ( )     

 

Suppose that bi > 0 and let us consider the existence of 

”interior” equilibrium points, where   ̂      for some i 

= 2, 3, 4, 5. Define 

 

   { ∈                                   

                } 
 

    { ∈                    

                 }  

                      
 

Coordinates   ̂   ̂  of equilibrium points are defined by 

the condition 

 

  (   )    (   )    (   )    (   )     
 

 
Figure 6: Numerical Solution of System (1) for Initial 

Condition   
         

        
        

  
       

          
           and Constant 

Environmental Condition (t = 120 in Table 1) 
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For a given set of parameters and function there are ten 

types of equilibrium points depending on filtration rate 

u: 

 ̂  ( ̂   ̂         ̂ ) ∈    

 ̂  ( ̂     ̂       ̂ ) ∈    

 ̂  ( ̂       ̂     ̂ ) ∈    

 ̂  ( ̂         ̂   ̂ ) ∈    

 ̂  ( ̂   ̂   ̂      ̂ ) ∈     

 ̂  ( ̂   ̂     ̂    ̂ ) ∈     

 ̂  ( ̂   ̂       ̂   ̂ ) ∈     

 ̂  ( ̂     ̂     ̂   ̂ ) ∈     

 ̂  ( ̂     ̂     ̂   ̂ ) ∈     

 ̂   ( ̂       ̂   ̂   ̂ ) ∈      
 

Determining stability of equilibria is accomplished by 

linearizing the model about steady state and examining 

the eigenvalues. For the presented model 16 possible 

kind of equilibria can exist on nonnegative cone.  

 

 
Figure 7: Numerical Solution of System (1) for Initial 

Condition   
         

        
         

  
     

       
            and Constant 

Environmental Condition (t = 120 in Table 1) 

 

 
Figure 8: Numerical Solution of System (1) for Initial 

Condition   
          

       
         

  
      

          
             and Constant 

Environmental Condition (t = 120 in Table 1) 

 

Jacobian matrix J about equilibria  ̂   ̂   ̂   ̂   and  

 ̂   for different value of u has eigenvalues with 

negative real part. The simulations seem to indicate that 

depending on u solution of (1) converges to one of 

equilibria  ̂   ̂   ̂   ̂   and   ̂   or to periodic solution. 

Figs. 6, 7 and 8 show the dynamics of algae in 

a simplified aquatic ecosystem simulating the presence 

of zooplankton of different body size and 

correspondingly different filter density u under constant 

environmental condition (t=120). The comparison of 

three figures for selected arbitrary constant values of u 

demonstrates that not only the size but also the number 

of algal species surviving in the system depends on u. 

For the environmental conditions specified in the given 

simulation experiment and u = 12 (Figure 6) the algal 

sizes xj for j = 3, 4, 5 converge to zero and only the 

smallest phytoplankton species x2 survives and the 

solution converges to  ̂  . When u is set to 1.5 or 10.5 

two species of algae are able to coexist and the solution 

converges to periodic orbit or to  ̂ , respectively 

(Figure 7, 8). 

With a denser filter, the smaller algae are filtered 

out more efficiently; because of the nonlinear effects of 

algal size on ecological parameters, a broader spectrum 

of species of different sizes is able to survive in the 

system under the environmental conditions. For the 

model presented with one growth-limiting nutrient we 

get that the model exhibits competitive exclusion, only 

two species of algae are able to survive. Detail analysis 

of similar systems is given for example in (Kmet and 

Straskraba, 2004) and (Scheffer, Rinaldi and 

Kuznetsov, 2000). Numerical solutions shown that in 

the case of optimal strategies   ̂( )  ̃( )  we have 

different time trajectories and all species of algae are 

able to survive (Figure 9, 10). 

 

 
Figure 9: Numerical Solution of System (1) for Initial 

Condition   
          

        
        

  
      

        
        - Local Optimality Solution 

and Constant Environmental Condition (t = 120 in 

Table 1) 

 

8. CONCLUSION 

We considered a simple ecological model. One 

parameter analysis of existence and stability of 
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equilibria was carried out. It is shown that the model 

has rich dynamics.  

Also a single network adaptive critic approach is 

presented for optimal control synthesis with control and 

state constraints. We have formulated, analysed and 

solved an optimal control problem related to the optimal 

uptake of nutrient by Daphnia. Using MATLAB, a 

simple simulation model based on adaptive critic neural 

network was constructed. Numerical simulations have 

shown that the adaptive critic neural network is able to 

solve nonlinear optimal control problem with control 

and state constraints and it explains feeding adaptation 

of filter feeders of Daphnia. 

 

 
Figure10: Trajectory of System (1) for Initial Condition 

  
          

        
        

         
  

       
        - Local Optimality Solution and 

Constant Environmental Condition (t = 120 in Table 1) 
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