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ABSTRACT

This contribution is focused on the improvement of the
adaptive control of the nonlinear process. The method
used here is based on the separation of the controller to
the linear and nonlinear part where the nonlinear part is
comes from the steady-state analysis and the linear part
uses the External Linear Model (ELM) as a linear
representation of the nonlinear parts in the loop.
Parameters of the ELM are estimated recursively with
the use of delta models as a special types of discrete-
time models. The controller synthesis uses a polynomial
approach with the pole-assignment method which
satisfies basic control requirements such as stability, a
reference signal tracking and disturbance attenuation.
The proposed methods are tested by the simulations on
a mathematical model of the Continuous Stirred Tank
Reactor (CSTR) as a typical member of nonlinear
systems with lumped parameters.

Keywords: nonlinear adaptive control, recursive
identification, CSTR, polynomial approach, pole-
assignment method

1. INTRODUCTION

The adaptive control (Astrom and Wittenmark 1989) is
relatively old but still commonly used control method
with strong background. The basic idea of adaptive
control comes from the nature and human living where
all living organisms “adapts” behavior to the actual state
and the living environment. Transferred to the control
theory, the adaptive controller adapts parameters or the
structure to parameters of the controlled plant according
to the selected criterion (Bobal et al. 2005).

The adaptive approach here is based on choosing
an external linear model (ELM) of the original
nonlinear system whose parameters are recursively
identified during the control. This strategy was also
presented for example in (Vojtesek and Dostal 2010)
and (Vojtesek et al. 2011).

There are some disadvantages which could occur
during the simulation experiments. The first problem
was with the recursive identification at the beginning of
the control when the controller does not have any a
priory information about the system. Insensitive choice
of starting values for the identification could lead to the
suboptimal or unstable results. One solution how to

overcome this feature is to limit the action value, e.g.
input to the system between some boundaries. The
question is: What are the right boundaries? Or, what if
these boundaries are too strict/liberal?

The control method used here is based on the
combination of the adaptive control and nonlinear
control. Theory of nonlinear control (NC) can be found
for example in (Astolfi et al. 2008) and (Vincent and
Grantham 1997), the factorization of nonlinear models
of the plants on linear and nonlinear parts is described
in (Nakamura et al. 2002) and (Sung and Lee 2004).
The controller consists of a static nonlinear part (SNP)
and a dynamic linear part (DLP). The static part is
obtained from the steady-state characteristic of the
system, its inversion, suitable approximation and its
derivative. The linear part is then described by the
external linear model with the use of delta (6-) models
(Middleton and Goodwin 2004) as a special type of
discrete-time models parameters of which approaches to
the continuous ones for the small sampling period
(Stericker and Sinha 1993).

The polynomial approach (Kucera 1993) included
in the control synthesis can be used for systems with
negative properties from the control point of view such
as nonlinear systems, non-minimum phase systems or
systems with time delays. Moreover, the pole-placed
method with spectral factorization satisfies basic control
requirements such as disturbance attenuation, stability
and reference signal tracking. The resulting controller is
hybrid because polynomial synthesis is made for
continuous-time but recursive identification runs on the
delta-model, which belongs to the class of discrete-time
models.

Chemical reactors are equipment widely used not
only in the chemical industry for production of various
products. The mathematical model of the Continuous
Stirred-Tank Reactor used in this work is typical
nonlinear system described mathematically by the set of
two nonlinear ordinary differential equations (ODE)
(Gao et al. 2002). As it is described in (Vojtesek and
Dostal 2010), this system has two stable and one
unstable steady-state which could lead to very unstable
or suboptimal output responses with the use of
conventional control methods.

All simulations were done on the mathematical
simulation software Matlab, version 7.0.3.
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2. CONTROLLED PLANT

The controlled process under the consideration is the
continuous stirred tank reactor (CSTR) with the spiral
cooling in the jacket. The scheme of the system can be
found in Figure 1.

The complete mathematical description of the
process is very complex and we must introduce some
simplifications. At first, we expect that reactant is
perfectly mixed and reacts to the final product with the
concentration c4(f). The heat produced by the reaction is
represented by the temperature of the reactant 71(¢).
Furthermore we also expect that volume, heat capacities
and densities are constant during the control.

A mathematical model of this system is derived
from the material and heat balances of the reactant and
cooling. The resulted model is then a set of two
Ordinary Differential Equations (ODEs) (Gao et al.
2002):

S

dT
—=a(Ty-T)+ay -ky-cy+az-q.-|1-e% |-(T,-T
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where a;_4 are constants computed as
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In previous equations, variable denotes time, T is
used for temperature of the reactant, V' is volume of the
reactor, ¢, represents concentration of the product, ¢
and ¢, are volumetric flow rates of the reactant and
cooling respectively. Indexes (-), denote inlet values of
the variables and (*). is used for variables related to the
cooling.

q.Sa0.To_ »

I.!.( EE,CMT.

Figure 1: Continuous Stirred Tank Reactor

The fixed values of the system are shown in Table 1
(Gao et al. 2002).
Table 1: Fixed parameters of the reactor

Reactant’s flow rate g =100 Lmin™
Reactor’s volume V=100
Reaction rate constant kp=7.2-10" min™
Activation energy to R E/R=110*K
Reactant’s feed temperature Ty=350K
Reaction heat AH = -2-10° cal. mol’’
Specific heat of the reactant =1 cal.g' K
Specific heat of the cooling Cpe=1 cal g K
Density of the reactant p=110"g.I'
Density of the cooling pe=110 g1
Feed concentration cqo=1moll'
Heat transfer coefficient h,=17-10° cal. min K"

The nonlinearity of the model can be found in
relation for the reaction rate, k;, which is computed
from Arrhenius law:

-E

k, =k, -erT (3)

where ky is the reaction rate constant, £ denotes an
activation energy and R is a gas constant.

The static analysis of this system is described in
detail for example in (Vojtesek and Dostal 2010). The
most important result of the steady-state analysis can be
found in the complexity of the system, it has three
steady-states — one unstable (N;) and two stable (S; and
S,). This special feature is shown in Figure 2 which
represents values of the reactant (Q,) and cooling (Q.)
heats for the working point represented by the
volumetric flow rates ¢ = 100 Lmin" and g, = 80 Lmin™
and  various  values of  the temperature
T=<300, 500> K.
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Figure 2: Heat balance inside the reactor

The steady-state values of the state variables in all
three steady-states are:

Si: TS =35423K ¢ =0.9620 moll”!
Ny: TS =39245K ¢ = 0.6180 moll™! 4)
Sy: TP =4525K ¢ =0.0439 mol™"

It is clear, that the second operating point S, has
better efficiency (95.6 % reacts) for the same input
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settings than on the point S (3.8 % reacts). This is the
main reason why we have chosen this second steady-
state in this work. The static analysis for the different
volumetric flow rate of the coolant

Demin < e < Gomar (%)

was done. The g, and q.n. denotes minimal and
maximal values of the volumetric flow rate of the
coolant and their values are g, = 20 Lmin" and
Gemax = 100 Lmin™. The results are shown in Figure 3.
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Figure 3: Static analysis of the reactor

3. NONLINEAR CONTROLLER
The controller here is divided into a static nonlinear part
(SNP) and a dynamic linear part (DLP) — see Figure 4.

I
[
'\ NONLINEAR CONTROLLER :

- o o e e e e o e e o P

Figure 4: The scheme of the nonlinear controller

The dynamic part DLP defines linear dynamic
relation between input to the nonlinear part u((¢) and the
difference between actual and desired reactant
temperature 7,,(%), i.e.

u, (1) = AT, (1) ©
Control . Recursive
synthesis J identification
u, ¥
\ q; T
w e u, u Wa. ELM T ¥
DLP = SNP = 3
"".;?'[ of CSTR
Ty-T.

Figure 5: The control scheme

The static part SNP describes nonlinear relation
between uy(f) and corresponding change of the input
volumetric flow rate of the coolant Ag.(¢).

The interconnection of the controller and the controller
plant can be found in the following Figure 5.

3.1. Static Nonlinear Part (SNP)

The SNP at it is comes from the static analysis
displayed in Figure for volumetric flow rate between
lower bound ¢, = 15 Lmin™" and upper bound ¢, = 105
Lmin" and we introduce new x- and y-axis coordinates
o and y defined as

o M [_]"// — TS —T,:‘Tin [K] (7)
ch

where T, represents the lowest value of the steady-
state reactant temperature, i.e. T° for the volumetric flow
rate in the upper bound, ¢.y, in this case.

The measured data on the real model are usually
affected by the measurement errors. These errors are
here simulated by the random white-noise errors. The
steady-state characteristic recomputed to the new
coordinates yand y is then shown in Figure 6.
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Figure 6: Simulated characteristic = f{w)

o(y) = 3.3931x10™ - 0.0995y + 6.0844
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v [K]

Figure 7: Simulated (dotted) and approximated (line)
characteristic @=f{y)

The inverse of this steady-state characteristic is
shown in Figure 7 and the resulted simulated data could
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be approximated by several functions from the ring of
polynomial, exponential, rational etc. functions.

In our case, the second order polynomial was used for
the approximation of the noised data. The resulted
polynomial has form

o(y)=3.3931x10"p> —0.0995y +6.0844 (8)

and as it can be seen in Figure 7, this function
approximates the data in suitable way.

The difference of the input volumetric flow rate of
the coolant u(f) = Aq.(¢) in the output from the nonlinear
part can be computed

do

u(r)=4q.(t)=4q, [Elm (1) ©)

The derivative dw/dy in the previous equation is
computed for each temperature of the reactant 7' from
the derivative of the function odkaz, i.e.

do

=6.7861x107 —0.0995 (10)
dy

3.1.1. External Linear Model (ELM) of CSTR

The dynamic behavior of the system shows that this
system could be represented by the second order
transfer function with the relative order one:

G(s):Y(S)zb(S)= bs+b, 11

U(s) a(s) s’ +as+a,

This ELM belongs to the class of continuous-time
(CT) models. The identification of such processes is not
very easy. One way, how we can overcome this
problem is the use of so called o—model. This model
belongs to the class of discrete models but its
parameters are close to the continuous ones for very
small sampling period as it proofed in (Stericker and
Sinha 1993).

The 6—model introduces a new complex variable y
computed as (see (Mukhopadhyay et al. 1992)):

z—1

ﬂ'Tv'Z-l-(l—ﬁ)'Tv

y= (12)

where £ is an optional parameter from the interval
0 < <1 and T, denotes a sampling period. It is clear
that we can obtain infinite number of &models for
various f. A so called forward 6-model for = 0 was
used and y operator is then

z—1
T,

y= (13)

The continuous model (11) is then rewritten to the
form
a’ (5)y(t')=b‘y (5)u(t') (14)
where polynomials a%(8) and b%(S) are discrete
polynomials and their coefficients are different from
those of the CT model a(s) and b(s). Time ¢’ is discrete
time.

Now we can introduce substitution ¢ =k—n for
k = n and Equation (14) then will be

5 y(k—n)= b55u(k—n)+b5u(k—n)—

(15)
—a; S y(k—n)—ay y(k—n)

which means that the regression vector @;is then

@, (k= 1) = [y, (k =1), =y, (k= 2),u, (k= 1),u,(k=2)] (16)
and the vector of parameters 8;is generally
0,(k)=[a’.a).b, b‘j (17)
which is computed from the differential equation

v (k) =65 (k)-

where e(k) is a general random immeasurable
component.

@5 (k—l)+e(k) (18)

3.1.2. Identification of ELM parameters

The Recursive Least-Squares (RLS) method is used for
the parameter estimation in this work. The RLS method
is well-known and widely used for the parameter
estimation. It is usually modified with some kind of
forgetting, exponential or directional. Parameters of the
identified system can vary during the control which is
typical for nonlinear systems and the use of some
forgetting factor could result in better output response.
The basic RLS method is described by the set of
equations:

dORAC)

e(k)=y(k)-o
£(k)=[1+@} (k)-P(k=1)-0, (k)| (19)
L(k)= §(k) P(k-1)-@; (k)
P (k)

P(k

[Pk1

(
6(k)=4, (k—1)+ L(k)e(k)
RLS with the changing exp. forgetting is used for

parameter estimation, where the changing forgetting
factor A, is computed from the equation

4 (k)=1-K -£(k)-&* (k) (20)

where K is small number, in our case K = 0.001.
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3.2. Dynamic Linear Part (DLP)

The DLP is constructed with the use of polynomial
approach (Kucera 1993) similarly as it was used in
adaptive control described in (Vojtesek et al. 2011).

—o— Q(s) |—=

Figure 8: 1DOF control scheme in dynamic linear part

The control system configuration with one degree-
of-freedom (1DOF) with controller in the feedback part
was used here and it is displayed in Figure 8. The
transfer function of the of the controller O(s) is
designed with the use of polynomial synthesis:

0(s)= qg()) 1)

where degrees of polynomials p(s)and ¢g(s) are
computed from:

degq(s)=dega(s)+deg f(s)-1

22
deg p(s)>dega(s)-1 @2)
and parameters of these polynomials are computed by
the Method of uncertain coefficients which compares
coefficients of individual s-powers from the
Diophantine equation, e.g. (Kucera 1993):

a(s)-s-p(s)+b(s)-q(s)=d(s) (23)

The polynomial d(s) on the right side of (23) is an
optional stable polynomial. It is obvious, that the degree
of this polynomial is:

degd(s)=dega(s)+degp(s)+1 (24)

and roots of this polynomial are called poles of the
closed-loop and their position affects quality of the
control. This polynomial is designed via well-known
Pole-placement method. A choice of roots needs some a
priory information about the system’s behavior. It is
good to connect poles with the parameters of the system
via spectral factorization. The polynomial d(s) can be
then rewritten to the form

d(s)=n(s)(s+a) " (25)
where a > 0 is an optional coefficient reflecting closed-

loop poles and stable polynomial n(s) is obtained from
the spectral factorization of the polynomial a(s)

n (s)-n(s)=a (s)-a(s) (26)

The Diophantine equation (23), as it is, is valid for
step changes of the reference and disturbance signals
which means that deg f{s) = 1 in (22). This controller
ensures stability, load disturbance attenuation and
asymptotic tracking of the reference signal.

The order of the polynomials g(s), p(s) and d(s)

for second order transfer transfer function (11) are:

degq(s)=dega(s)=2
deg p(s)=dega(s)—1=deg p(s)=1 (27)
degd (s)=dega(s)+deg p(s)+1=2+1+1=4

The transfer function of the controller is then

A — q(S) 7‘12S2+%S+q0
Q(S)isﬁ(s}i s-(s+ py) @8

and the polynomial d(s) could be chosen as
al(s):n(s)-(s+0t)2 (29)

Parameters of the polynomial n(s) which are
computed from the spectral factorization are defined as:

p— 2 p—
Ny =+/Gy, 1Ny =

The control system synthesis is done here in
continuous time, but recursive identification uses
discrete time steps. The resulted, so called “hybrid”,
controller works in the continuous time but parameters
of the polynomials in the system’s transfer function are
identified recursively in the sampling period 7,. This
assumption results in the condition, that the parameters
of the &model are close the continuous ones for the
small sampling period.

a’ +2n,-2a, (30)

4. SIMULATION STUDIES

The proposed control strategy was tested on the
mathematical model of the CSTR described in chapter
2. The goal was to test Due to comparability of the
results, the common values for all simulations were: the
sampling period was T, = 0.3 min, the simulation time
600 min and 6 different step changes were done during
this time. The initial vector of parameters used for

identification was 92? :[0.11,0.1,0.1,0.1] and the initial

covariance matrix was P; = 1107 for i = 1,..,.4. The
simulation was done for the different values of the
position of the root « in (29), a=0.06, 0.12 and 0.18.
The first experiment simulates nonlinear adaptive
control with ELM in the form of transfer function (11)
and feedback 1DOF controller (28). Resulting courses
of the reference signal (wanted value), w(¢), the input
variable, u(?), and the output variable y(¢) are shown in
Figure 9 and Figure 10. Note, that the output variable
w(f) represents difference of the actual value of the
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reactant’s temperature from its steady-state value. This
was done because we want the output to start from zero.
On the other hand, the input variable u(f) shows change
of the volumetric flow rate of the coolant from its

steady-state value. The input and output variables are
then:

u(t)=q.~q;y(t)=T(t)-1

(31
30 —
——V (@=0.06)
— —y(a=0.12)
201 —- -y (a=0.18)" A
e NG
=104 i
X,
H
-10-
-20 . . sz

t [min]
Figure 9: The course of the reference signal, w(f), and
the output variable, y(¢), for different values of the

parameter &
40

N
o
1

o
)

u@®[l.min™]
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o
1

u(t) (=0.06) :
- —u() (=0.12) |
— - -u(t) (@=0.18)

-40

0 200 t [min] 400 600

Figure 10: The course of the input variable, y(f), for
different values of the parameter «

Figure 9 shows that proposed controlled did not
have any serious problems with the control of this
nonlinear process. As it was mentioned, the control
response could be tuned via choice of the parameter «
in (29). It is clear, that the increasing value of this
parameter results in quicker output response.

2.0 08
1.8 L0.6
1.6 -0.4;
4l Loo <
1.2 L0.0
1.0 , , 0.2
0 200 400 600

t [min]
Figure 11: The course of the identified parameters a,’
and a, ° during the control for o= 0.12
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b 0.2

0.2 5
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0.0 T T -0.2
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Figure 12: The course of the identified parameters by’
and b, ° during the control for o= 0.12

The course of the identified parameters a15, ay 5, b, o
and b, ° for parameter @ = 0.12 during the control is
shown in Figure 11 and Figure 12.

It is obvious, that the controller needs some initial
time, in our case about 150-200 min for adaptation. That
is why the values are cut — the original values will
rescale the graphs and devalue results. On the other
hand, this adaptation does not influence results of
control as it can be seen in Figure 9 and Figure 10.

The second analysis compares results of the
nonlinear adaptive control with the ordinary adaptive
control without the SNP. Courses of the output and
input variables for the value of the parameter o = 0.12
are shown in the following figures.

o

o

®, ¥ [K]

W
=
o

- -
-30 —y(t) - AC ]
— —y(t) - NAC

'40 T T T
0 200 400 600
t [min]

Figure 13: The course of the reference signal, w(f), and
the output variable, y(¢), for adaptive control (AC) and
nonlinear adaptive control (NAC) for a=0.12

60
— —u(t) - NAC

40+ u(t) - AC b
. )
E20
=1 ol |

_20 -

-404 T T

0 200 i 400 600

Figure 14: The course of the input variable, u(f), for
adaptive control (AC) and nonlinear adaptive control
(NAC) for ¢=0.12
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Presented results in Figure 13 and Figure 14 shows
that the nonlinear adaptive control produces more stable
and smooth course of both input and output variables
than the ordinary adaptive control. This is evident at
time ¢ = 400 min, when adaptive control produces very
suboptimal output response and big changes of the input
variable.

CONCLUSION

In this paper, the revised approach to the adaptive
control with the static nonlinear part was used. The
proposed control technique was tested by the simulation
on the mathematical model of the continuous stirred
tank reactor with the spiral cooling in the jacket as a
typical member of the nonlinear system with lumped
parameters. This mathematical model was described by
the set of two ODE which were solved numerically. The
nonlinear adaptive controller uses results of the steady-
state analysis to help the controller to cope the
nonlinearities. Used polynomial synthesis together with
the pole-assignment method fulfills basic control
requirements and moreover this controller could be
tuned by the choice of the parameter c. Increasing value
of this parameter results in quicker output response. The
comparison with the pure adaptive control has shown
usability of this method for bigger step changes of the
reference signal. The controller could be also improved
with the use of some predictive approach, for example
Generalized Predictive Control (GPC) which will
produce better control output. It will be part of our
future work. We want to also test this control strategy
by the control of the real plant or the real model of the
plant which is necessary part of the verification.

REFERENCES

Astolfi, A.; D. Karagiannis; and R. Ortega. 2008.
Nonlinear and adaptive control with applications.
Springer-Verlag, London.

Astrom, K.J. and B. Wittenmark. 1989. Adaptive
Control. Addison Wesley. Reading. MA, ISBN 0-
201-09720-6.

Bobal, V.; J. Bohm; J. Fessl; and J. Machacek. 2005.
Digital  Self-tuning  Controllers:  Algorithms.
Implementation and Applications. Advanced
Textbooks in Control and Signal Processing.
Springer-Verlag London Limited. ISBN 1-85233-
980-2.

Gao, R.; A. O’dywer; E. Coyle. 2002. “A Non-linear
PID Controller for CSTR Using Local Model
Networks”. Proc. of 4th World Congress on
Intelligent Control and Automation. Shanghai. P.
R. China. 3278-3282

Kucera, V. 1993. “Diophantine equations in control — A
survey”. Automatica. 29. 1361-1375

Middleton, R.H. and G. C. Goodwin. 2004. Digital
Control and Estimation - A Unified Approach.
Prentice Hall. Englewood Cliffs. ISBN 0-13-
211798-3

Mukhopadhyay, S.; A. G. Patra; and G. P. Rao. 1992.
“New class of discrete-time models for continuos-

time systems”. International Journal of Control.
vol.55. 1161-1187

Nakamura, M.; T. Sugi and S. Goto. 2002. "Nonlinear
separation model and control for a complex
process realized by conventional PID controller
hardware". In Proceedings of the 4th Asian
Control Conference, Singapore, 274-279.

Stericker, D.L. and N. K. Sinha. 1993. “Identification of
continuous-time systems from samples of input-
output data using the d-operator”. Control-Theory
and Advanced Technology. vol. 9. 113-125

Sung, S. and J. Lee. 2004. "Modeling and control of
Wiener- type processes". Chemical Engineering
Science, 59, 1515-1521.

Vincent,; T.L. and W.J. Grantham. 1997. Nonlinear and
optimal control systems. John Wiley & Sons, New
York. ISBN 0471042358

Vojtesek, J.; P. Dostal. 2010 “Adaptive Control of
Continuous-Stirred Tank Reactor in Two Stable
Steady-States”, In  Proceedings of the IFAC
Workshop Adaptation and Learning in Control
and Signal Processing 2010, Antalya, Turkey
2010, ISBN 978-3-902661-85-2.

Vojtesek, J.; J. Novak; P. Dostal. 2011. “Effect of
External Linear Model’s Order on Adaptive
Control of CSTR®. In Proceeding of The 19th
IASTED International Conference on Applied
Simulation and Modelling (ASM 2011), p. 82-87.
ISBN 978-0-88986-884-7.

AUTHORS BIOGRAPHY

JIRI VOJTESEK was born in Zlin. Czech Republic and
studied at the Tomas Bata University in Zlin. where he
got his master degree in chemical and process
engineering in 2002. He has finished his Ph.D. focused
on Modern control methods for chemical reactors in
2007. His contact is vojtesek@fai.utb.cz.

PETR DOSTAL studied at the Technical University of
Pardubice. He obtained his PhD. degree in Technical
Cybernetics in 1979 and he became professor in Process
Control in 2000. His research interest are modeling and
simulation of continuous-time chemical processes.
polynomial methods. optimal. adaptive and robust
control. You can contact him on email address
dostalp@fai.utb.cz.

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012

978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds. [

13



