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ABSTRACT 
This contribution is focused on the improvement of the 
adaptive control of the nonlinear process. The method 
used here is based on the separation of the controller to 
the linear and nonlinear part where the nonlinear part is 
comes from the steady-state analysis and the linear part 
uses the External Linear Model (ELM) as a linear 
representation of the nonlinear parts in the loop. 
Parameters of the ELM are estimated recursively with 
the use of delta models as a special types of discrete-
time models. The controller synthesis uses a polynomial 
approach with the pole-assignment method which 
satisfies basic control requirements such as stability, a 
reference signal tracking and disturbance attenuation. 
The proposed methods are tested by the simulations on 
a mathematical model of the Continuous Stirred Tank 
Reactor (CSTR) as a typical member of nonlinear 
systems with lumped parameters. 

 
Keywords: nonlinear adaptive control, recursive 
identification, CSTR, polynomial approach, pole-
assignment method 

 
1. INTRODUCTION 
The adaptive control (Åström and Wittenmark 1989) is 
relatively old but still commonly used control method 
with strong background. The basic idea of adaptive 
control comes from the nature and human living where 
all living organisms “adapts” behavior to the actual state 
and the living environment. Transferred to the control 
theory, the adaptive controller adapts parameters or the 
structure to parameters of the controlled plant according 
to the selected criterion (Bobal et al. 2005).  
 The adaptive approach here is based on choosing 
an external linear model (ELM) of the original 
nonlinear system whose parameters are recursively 
identified during the control. This strategy was also 
presented for example in (Vojtesek and Dostal 2010) 
and (Vojtesek et al. 2011).  
 There are some disadvantages which could occur 
during the simulation experiments. The first problem 
was with the recursive identification at the beginning of 
the control when the controller does not have any a 
priory information about the system. Insensitive choice 
of starting values for the identification could lead to the 
suboptimal or unstable results. One solution how to 

overcome this feature is to limit the action value, e.g. 
input to the system between some boundaries. The 
question is: What are the right boundaries? Or, what if 
these boundaries are too strict/liberal? 
 The control method used here is based on the 
combination of the adaptive control and nonlinear 
control. Theory of nonlinear control (NC) can be found 
for example in (Astolfi et al. 2008) and (Vincent and 
Grantham 1997), the factorization of nonlinear models 
of the plants on linear and nonlinear parts is described 
in (Nakamura et al. 2002) and (Sung and Lee 2004). 
The controller consists of a static nonlinear part (SNP) 
and a dynamic linear part (DLP). The static part is 
obtained from the steady-state characteristic of the 
system, its inversion, suitable approximation and its 
derivative. The linear part is then described by the 
external linear model with the use of delta (δ-) models 
(Middleton and Goodwin 2004) as a special type of 
discrete-time models parameters of which approaches to 
the continuous ones for the small sampling period 
(Stericker and Sinha 1993).  
 The polynomial approach (Kucera 1993) included 
in the control synthesis can be used for systems with 
negative properties from the control point of view such 
as nonlinear systems, non-minimum phase systems or 
systems with time delays. Moreover, the pole-placed 
method with spectral factorization satisfies basic control 
requirements such as disturbance attenuation, stability 
and reference signal tracking. The resulting controller is 
hybrid because polynomial synthesis is made for 
continuous-time but recursive identification runs on the 
delta-model, which belongs to the class of discrete-time 
models. 
 Chemical reactors are equipment widely used not 
only in the chemical industry for production of various 
products. The mathematical model of the Continuous 
Stirred-Tank Reactor used in this work is typical 
nonlinear system described mathematically by the set of 
two nonlinear ordinary differential equations (ODE) 
(Gao et al. 2002). As it is described in (Vojtesek and 
Dostal 2010), this system has two stable and one 
unstable steady-state which could lead to very unstable 
or suboptimal output responses with the use of 
conventional control methods. 
 All simulations were done on the mathematical 
simulation software Matlab, version 7.0.3. 
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be approximated by several functions from the ring of 
polynomial, exponential, rational etc. functions. 
In our case, the second order polynomial was used for 
the approximation of the noised data. The resulted 
polynomial has form 

 
( ) 4 23.3931 10 0.0995 6.0844ω ψ ψ ψ−= × − +  (8) 

 
and as it can be seen in Figure 7, this function 
approximates the data in suitable way.  
 The difference of the input volumetric flow rate of 
the coolant u(t) = Δqc(t) in the output from the nonlinear 
part can be computed  
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the derivative of the function odkaz, i.e. 
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3.1.1. External Linear Model (ELM) of CSTR 
The dynamic behavior of the system shows that this 
system could be represented by the second order 
transfer function with the relative order one: 
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 This ELM belongs to the class of continuous-time 
(CT) models. The identification of such processes is not 
very easy. One way, how we can overcome this 
problem is the use of so called δ–model. This model 
belongs to the class of discrete models but its 
parameters are close to the continuous ones for very 
small sampling period as it proofed in (Stericker and 
Sinha 1993). 
 The δ–model introduces a new complex variable γ 
computed as (see (Mukhopadhyay et al. 1992)):  
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where β  is an optional parameter from the interval  
0 ≤ β ≤ 1 and Tv denotes a sampling period. It is clear 
that we can obtain infinite number of δ-models for 
various β.  A so called forward δ-model for β = 0 was 
used and γ operator is then  
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which means that the regression vector ϕδ is then 
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and the vector of parameters θδ is generally 
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where e(k) is a general random immeasurable 
component.  
 
3.1.2. Identification of ELM parameters 
The Recursive Least-Squares (RLS) method is used for 
the parameter estimation in this work. The RLS method 
is well-known and widely used for the parameter 
estimation. It is usually modified with some kind of 
forgetting, exponential or directional. Parameters of the 
identified system can vary during the control which is 
typical for nonlinear systems and the use of some 
forgetting factor could result in better output response.  
The basic RLS method is described by the set of 
equations: 
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 RLS with the changing exp. forgetting is used for 
parameter estimation, where the changing forgetting 
factor λ1 is computed from the equation 

 
( ) ( ) ( )2

1 1k K k kλ ξ ε= − ⋅ ⋅   (20) 
 
where K is small number, in our case K = 0.001. 
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reactant’s temperature from its steady-state value. This 
was done because we want the output to start from zero. 
On the other hand, the input variable u(t) shows change 
of the volumetric flow rate of the coolant from its 
steady-state value. The input and output variables are 
then: 
 

( ) ( ) ( );s s
c cu t q q y t T t T= − = −  (31) 

 

 
Figure 9: The course of the reference signal, w(t), and 
the output variable, y(t), for different values of the 
parameter α 

 
Figure 10: The course of the input variable, y(t), for 
different values of the parameter α 
 
 Figure 9 shows that proposed controlled did not 
have any serious problems with the control of this 
nonlinear process. As it was mentioned, the control 
response could be tuned via choice of the parameter α 
in (29). It is clear, that the increasing value of this 
parameter results in quicker output response. 
 

 
Figure 11: The course of the identified parameters a1

δ 
and a0

 δ during the control for α = 0.12 

 
Figure 12: The course of the identified parameters b1

δ 
and b0

 δ during the control for α = 0.12 
  
 The course of the identified parameters a1

δ, a0
 δ, b1

 δ 
and b0

 δ for parameter α = 0.12 during the control is 
shown in Figure 11 and Figure 12. 
 It is obvious, that the controller needs some initial 
time, in our case about 150-200 min for adaptation. That 
is why the values are cut – the original values will 
rescale the graphs and devalue results. On the other 
hand, this adaptation does not influence results of 
control as it can be seen in Figure 9 and Figure 10. 
 The second analysis compares results of the 
nonlinear adaptive control with the ordinary adaptive 
control without the SNP. Courses of the output and 
input variables for the value of the parameter α = 0.12 
are shown in the following figures. 
 

 
Figure 13: The course of the reference signal, w(t), and 
the output variable, y(t), for adaptive control (AC) and 
nonlinear adaptive control (NAC) for α = 0.12 
  

 
Figure 14: The course of the input variable, u(t), for 
adaptive control (AC) and nonlinear adaptive control 
(NAC) for α = 0.12 
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 Presented results in Figure 13 and Figure 14 shows 
that the nonlinear adaptive control produces more stable 
and smooth course of both input and output variables 
than the ordinary adaptive control. This is evident at 
time t = 400 min, when adaptive control produces very 
suboptimal output response and big changes of the input 
variable. 

 
CONCLUSION 
In this paper, the revised approach to the adaptive 
control with the static nonlinear part was used. The 
proposed control technique was tested by the simulation 
on the mathematical model of the continuous stirred 
tank reactor with the spiral cooling in the jacket as a 
typical member of the nonlinear system with lumped 
parameters. This mathematical model was described by 
the set of two ODE which were solved numerically. The 
nonlinear adaptive controller uses results of the steady-
state analysis to help the controller to cope the 
nonlinearities. Used polynomial synthesis together with 
the pole-assignment method fulfills basic control 
requirements and moreover this controller could be 
tuned by the choice of the parameter α. Increasing value 
of this parameter results in quicker output response. The 
comparison with the pure adaptive control has shown 
usability of this method for bigger step changes of the 
reference signal. The controller could be also improved 
with the use of some predictive approach, for example 
Generalized Predictive Control (GPC) which will 
produce better control output. It will be part of our 
future work. We want to also test this control strategy 
by the control of the real plant or the real model of the 
plant which is necessary part of the verification.  
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